Back to Multiple platform build/check report for BioC 3.9 |
|
This page was generated on 2019-10-16 12:48:21 -0400 (Wed, 16 Oct 2019).
Package 1100/1741 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
netresponse 1.44.0 Leo Lahti
| malbec2 | Linux (Ubuntu 18.04.2 LTS) / x86_64 | OK | OK | WARNINGS | |||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | WARNINGS | OK | |||||||
celaya2 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | [ WARNINGS ] | OK |
Package: netresponse |
Version: 1.44.0 |
Command: /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --install=check:netresponse.install-out.txt --library=/Library/Frameworks/R.framework/Versions/Current/Resources/library --no-vignettes --timings netresponse_1.44.0.tar.gz |
StartedAt: 2019-10-16 05:05:13 -0400 (Wed, 16 Oct 2019) |
EndedAt: 2019-10-16 05:10:22 -0400 (Wed, 16 Oct 2019) |
EllapsedTime: 308.8 seconds |
RetCode: 0 |
Status: WARNINGS |
CheckDir: netresponse.Rcheck |
Warnings: 1 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD check --install=check:netresponse.install-out.txt --library=/Library/Frameworks/R.framework/Versions/Current/Resources/library --no-vignettes --timings netresponse_1.44.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.9-bioc/meat/netresponse.Rcheck’ * using R version 3.6.1 (2019-07-05) * using platform: x86_64-apple-darwin15.6.0 (64-bit) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘netresponse/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘netresponse’ version ‘1.44.0’ * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘netresponse’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking compilation flags in Makevars ... OK * checking for GNU extensions in Makefiles ... OK * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking compiled code ... OK * checking files in ‘vignettes’ ... WARNING Files in the 'vignettes' directory but no files in 'inst/doc': ‘NetResponse.Rmd’, ‘NetResponse.md’, ‘TODO/TODO.Rmd’, ‘fig/NetResponse2-1.png’, ‘fig/NetResponse2b-1.png’, ‘fig/NetResponse3-1.png’, ‘fig/NetResponse4-1.png’, ‘fig/NetResponse5-1.png’, ‘fig/NetResponse7-1.png’, ‘fig/vdp-1.png’, ‘main.R’, ‘netresponse.bib’, ‘netresponse.pdf’ Package has no Sweave vignette sources and no VignetteBuilder field. * checking examples ... OK Examples with CPU or elapsed time > 5s user system elapsed ICMg.combined.sampler 46.461 0.202 53.401 netresponse-package 5.015 0.313 5.327 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘ICMg.test.R’ Running ‘bicmixture.R’ Running ‘mixture.model.test.R’ Running ‘mixture.model.test.multimodal.R’ Running ‘mixture.model.test.singlemode.R’ Running ‘timing.R’ Running ‘toydata2.R’ Running ‘validate.netresponse.R’ Running ‘validate.pca.basis.R’ Running ‘vdpmixture.R’ OK * checking PDF version of manual ... OK * DONE Status: 1 WARNING See ‘/Users/biocbuild/bbs-3.9-bioc/meat/netresponse.Rcheck/00check.log’ for details.
netresponse.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Versions/Current/Resources/bin/R CMD INSTALL netresponse ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/3.6/Resources/library’ * installing *source* package ‘netresponse’ ... ** using staged installation ** libs clang -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk -I/usr/local/include -fPIC -Wall -g -O2 -c netresponse.c -o netresponse.o netresponse.c:264:15: warning: unused variable 'prior_fields' [-Wunused-variable] const char *prior_fields[]={"Mumu","S2mu", ^ netresponse.c:686:6: warning: variable 'Mumu' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim1) { ^~~~ netresponse.c:713:21: note: uninitialized use occurs here vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, ^~~~ netresponse.c:686:3: note: remove the 'if' if its condition is always true if(dim1) { ^~~~~~~~~ netresponse.c:655:15: note: initialize the variable 'Mumu' to silence this warning double *Mumu, *S2mu, *Mubar, *Mutilde, ^ = NULL netresponse.c:686:6: warning: variable 'S2mu' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim1) { ^~~~ netresponse.c:713:27: note: uninitialized use occurs here vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, ^~~~ netresponse.c:686:3: note: remove the 'if' if its condition is always true if(dim1) { ^~~~~~~~~ netresponse.c:655:22: note: initialize the variable 'S2mu' to silence this warning double *Mumu, *S2mu, *Mubar, *Mutilde, ^ = NULL netresponse.c:686:6: warning: variable 'Mubar' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim1) { ^~~~ netresponse.c:713:33: note: uninitialized use occurs here vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, ^~~~~ netresponse.c:686:3: note: remove the 'if' if its condition is always true if(dim1) { ^~~~~~~~~ netresponse.c:655:30: note: initialize the variable 'Mubar' to silence this warning double *Mumu, *S2mu, *Mubar, *Mutilde, ^ = NULL netresponse.c:686:6: warning: variable 'Mutilde' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim1) { ^~~~ netresponse.c:713:40: note: uninitialized use occurs here vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde, ^~~~~~~ netresponse.c:686:3: note: remove the 'if' if its condition is always true if(dim1) { ^~~~~~~~~ netresponse.c:655:40: note: initialize the variable 'Mutilde' to silence this warning double *Mumu, *S2mu, *Mubar, *Mutilde, ^ = NULL netresponse.c:686:6: warning: variable 'AlphaKsi' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim1) { ^~~~ netresponse.c:714:7: note: uninitialized use occurs here AlphaKsi, BetaKsi, KsiAlpha, KsiBeta, ^~~~~~~~ netresponse.c:686:3: note: remove the 'if' if its condition is always true if(dim1) { ^~~~~~~~~ netresponse.c:656:14: note: initialize the variable 'AlphaKsi' to silence this warning *AlphaKsi, *BetaKsi, *KsiAlpha, *KsiBeta, *U_p, *prior_alpha, ^ = NULL netresponse.c:686:6: warning: variable 'BetaKsi' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim1) { ^~~~ netresponse.c:714:17: note: uninitialized use occurs here AlphaKsi, BetaKsi, KsiAlpha, KsiBeta, ^~~~~~~ netresponse.c:686:3: note: remove the 'if' if its condition is always true if(dim1) { ^~~~~~~~~ netresponse.c:656:24: note: initialize the variable 'BetaKsi' to silence this warning *AlphaKsi, *BetaKsi, *KsiAlpha, *KsiBeta, *U_p, *prior_alpha, ^ = NULL netresponse.c:686:6: warning: variable 'KsiAlpha' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim1) { ^~~~ netresponse.c:714:26: note: uninitialized use occurs here AlphaKsi, BetaKsi, KsiAlpha, KsiBeta, ^~~~~~~~ netresponse.c:686:3: note: remove the 'if' if its condition is always true if(dim1) { ^~~~~~~~~ netresponse.c:656:35: note: initialize the variable 'KsiAlpha' to silence this warning *AlphaKsi, *BetaKsi, *KsiAlpha, *KsiBeta, *U_p, *prior_alpha, ^ = NULL netresponse.c:686:6: warning: variable 'KsiBeta' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim1) { ^~~~ netresponse.c:714:36: note: uninitialized use occurs here AlphaKsi, BetaKsi, KsiAlpha, KsiBeta, ^~~~~~~ netresponse.c:686:3: note: remove the 'if' if its condition is always true if(dim1) { ^~~~~~~~~ netresponse.c:656:45: note: initialize the variable 'KsiBeta' to silence this warning *AlphaKsi, *BetaKsi, *KsiAlpha, *KsiBeta, *U_p, *prior_alpha, ^ = NULL netresponse.c:696:6: warning: variable 'U_p' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim2) { ^~~~ netresponse.c:716:7: note: uninitialized use occurs here U_p, U_hat, ^~~ netresponse.c:696:3: note: remove the 'if' if its condition is always true if(dim2) { ^~~~~~~~~ netresponse.c:656:51: note: initialize the variable 'U_p' to silence this warning *AlphaKsi, *BetaKsi, *KsiAlpha, *KsiBeta, *U_p, *prior_alpha, ^ = NULL netresponse.c:696:6: warning: variable 'U_hat' is used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized] if(dim2) { ^~~~ netresponse.c:716:12: note: uninitialized use occurs here U_p, U_hat, ^~~~~ netresponse.c:696:3: note: remove the 'if' if its condition is always true if(dim2) { ^~~~~~~~~ netresponse.c:661:14: note: initialize the variable 'U_hat' to silence this warning SEXP* U_hat; ^ = NULL 11 warnings generated. clang -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -single_module -multiply_defined suppress -L/Library/Frameworks/R.framework/Resources/lib -L/usr/local/lib -o netresponse.so netresponse.o -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation installing to /Library/Frameworks/R.framework/Versions/3.6/Resources/library/00LOCK-netresponse/00new/netresponse/libs ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** checking absolute paths in shared objects and dynamic libraries ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (netresponse)
netresponse.Rcheck/tests/bicmixture.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.5 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("~/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("~/Rpackages/netresponse/netresponse/R/internals.R") > #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ############################################# > > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > dd <- 3 # Dimensionality of data > Nc <- 5 # Number of components > Ns <- 200 # Number of data points > sd0 <- 3 # component spread > rgam.shape = 2 # parameters for Gamma distribution > rgam.scale = 2 # parameters for Gamma distribution to define precisions > > > # Generate means and variances (covariance diagonals) for the components > component.means <- matrix(rnorm(Nc*dd, mean = 0, sd = sd0), nrow = Nc, ncol = dd) > component.vars <- matrix(1/rgamma(Nc*dd, shape = rgam.shape, scale = rgam.scale), + nrow = Nc, ncol = dd) > component.sds <- sqrt(component.vars) > > > # Size for each component -> sample randomly for each data point from uniform distr. > # i.e. cluster assignments > sample2comp <- sample.int(Nc, Ns, replace = TRUE) > > D <- array(NA, dim = c(Ns, dd)) > for (i in 1:Ns) { + # component identity of this sample + ci <- sample2comp[[i]] + cm <- component.means[ci,] + csd <- component.sds[ci,] + D[i,] <- rnorm(dd, mean = cm, sd = csd) + } > > > ###################################################################### > > # Fit mixture model > out <- mixture.model(D, mixture.method = "bic") > > # FIXME rowmeans(qofz) is constant but not 1 > #qofz <- P.r.s(t(D), list(mu = out$mu, sd = out$sd, w = out$w), log = FALSE) > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$mu[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$mu[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$sd[ord.out,] > sds.in <- sqrt(component.vars[ord.in,]) > > # ----------------------------------------------------------- > > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > ###################################################### > > #for (ci in 1:nrow(means.out)) { > # points(means.out[ci,1], means.out[ci,2], col = "red", pch = 19) > # el <- ellipse(matrix(c(vars.out[ci,1],0,0,vars.out[ci,2]),2), centre = means.out[ci,]) > # lines(el, col = "red") > #} > > #for (ci in 1:nrow(means.in)) { > # points(means.in[ci,1], means.in[ci,2], col = "blue", pch = 19) > # el <- ellipse(matrix(c(vars.in[ci,1],0,0,vars.in[ci,2]),2), centre = means.in[ci,]) > # lines(el, col = "blue") > #} > > > > > > > proc.time() user system elapsed 4.484 0.580 5.016
netresponse.Rcheck/tests/ICMg.test.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Test script for the ICMg method > > # Load the package > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.5 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > data(osmo) # Load data > > # Set parameters > C.boost = 1 > alpha = 10 > beta = 0.01 > B.num = 10 > B.size = 10 > S.num = 10 > S.size = 10 > C = 24 > pm0 = 0 > V0 = 1 > V = 0.1 > > # Run combined ICMg sampler > res = ICMg.combined.sampler(osmo$ppi, osmo$exp, C, alpha, beta, pm0, V0, V, B.num, B.size, S.num, S.size, C.boost) Sampling ICMg2... nodes:10250links:1711observations:133components:24alpha:10beta:0.01 Sampling200iterationcs Burnin iterations:100 I: 0 n(z):434418422400439406437424454419439406444425410476444387420444444412421425 m(z):787369609879637965805970697455797766777564687163 I:10 convL:-0.492014211598267n(z):4114192043682382701635287418237235187194464462529514987319334343536239420 convN:-0.0104134902697194m(z):575557914764164591042354594497915573133498281783856 I:20 convL:-0.39641817647485n(z):51035219042214920818283094332412341871685894704554571112255279262557189394 convN:-0.00451304641669501m(z):5757621054850161561082953564889955372128477987754056 I:30 convL:-0.361323501046533n(z):60036517942415219419343144882352411791605904273574351069203277227609193398 convN:-0.00334905199030115m(z):5658601055754160561092953604888935273128477984664056 I:40 convL:-0.354570489257674n(z):61037319748417817219003204722052211871716123973454011128217270187644174385 convN:-0.00357466792109701m(z):8257601055953147591092945624892845272126467885644156 I:50 convL:-0.351776267188899n(z):49637614447819516919313654602042241801746284063703871139235285204659152389 convN:-0.00209980159385184m(z):8557571065952150581092945624888825376126457886654154 I:60 convL:-0.340079294611711n(z):52334518948621114918333763991892231831786463603664141305223255198688134377 convN:-0.00151299543952304m(z):8457551066252151591082944624789805377126428087674153 I:70 convL:-0.323645655033962n(z):50534517649920914018363694052122261991636783473553891295229289206667148363 convN:-0.00353402343911212m(z):8557571076152151591082943614789805376126428087674153 I:80 convL:-0.338618562919745n(z):47637216150820714918114334332242292011987013303623761290191269194640144351 convN:-0.00200523251187783m(z):8457571086152153591082943604788805376125428088674153 I:90 convL:-0.333623516587954n(z):46538016649220715417884233761882171881966903603383841364206298193684148345 convN:-0.00416530180836486m(z):8357571096152152581082943614788815378124428086674154 I:100 convL:-0.323906363535987n(z):46336817151823012617894233951942201951996763513283831354228251178708147355 convN:-0.00352844675330135m(z):8458551056252151581082944614787865377125418088664153 Sample iterations:100 I:110 convL:-0.314820828328125n(z):43636616557222414217484253721972112021866483683303791422227261208656139366 convN:-0.00792078233372038m(z):8458551066253152591082943594787835377125428087664254 I:120 convL:-0.325492870234483n(z):40939318649624013716964373611992102041926893463423691511227254199641144368 convN:-0.00383024580126479m(z):8558551056154151591082943604786875277125427987654353 I:130 convL:-0.336315571631742n(z):40039617150125413317744603482012302171936993173653571443228243184644122370 convN:-0.00370086670630215m(z):8458551066154152591082943604784865277126437986654354 I:140 convL:-0.316471113427607n(z):34640717149524313717184423852232251922017423403633741456205230172663141379 convN:-0.00914988064118341m(z):8459551076254153591082943604684875277124427984654355 I:150 convL:-0.33117134791452n(z):28840017650924813616734133832152142162087573143523721574204241172666149370 convN:-0.00310102596650277m(z):8558551066253151591082943604785865377125427886654355 I:160 convL:-0.329503448569547n(z):27638321447224312416854013522232122011998283453633741565211228196627141387 convN:-0.0033562597637511m(z):8458551066254152591082943604587865277125427987654353 I:170 convL:-0.330347553176626n(z):22436121950722512416224013882412302022008783593713641615228256172558143362 convN:-0.00695883801271869m(z):8558551066153151581082943604785875377126427987654353 I:180 convL:-0.324489099262703n(z):21238221951224414316373723672012141941998663463793831632244240175582123384 convN:-0.00291996688702388m(z):8458551066153153591082943604685865377125437985654355 I:190 convL:-0.324249207063173n(z):14440320552026114516484073872022301952088983483693651680210227171528117382 convN:-0.00579488784325935m(z):8358551066154153601082943604686865277126417986654354 I:200 convL:-0.334458141031202n(z):15239918853123713016733983052132132042119443793983611652211238181524143365 convN:-0.00580906656398108m(z):8758551066153150581082943604685865377126437987654353 DONE > > # Compute component membership probabilities for the data points > res$comp.memb <- ICMg.get.comp.memberships(osmo$ppi, res) > > # Compute (hard) clustering for nodes > res$clustering <- apply(res$comp.memb, 2, which.max) > > proc.time() user system elapsed 10.749 0.604 11.314
netresponse.Rcheck/tests/mixture.model.test.multimodal.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.5 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > # Three MODES > > # set.seed(34884) > set.seed(3488400) > > Ns <- 200 > Nd <- 2 > > D3 <- rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 3), ncol = Nd), + cbind(rnorm(Ns, mean = -3), rnorm(Ns, mean = 3)) + ) > > #X11() > par(mfrow = c(2,2)) > for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D3, mixture.method = mm, pca.basis = pp) + plot(D3, col = apply(out$qofz, 1, which.max), main = paste(mm, "/ pca:", pp)) + + } + } > > # VDP is less sensitive than BIC in detecting Gaussian modes (more > # separation between the clusters needed) > > # pca.basis option is less important for sensitive detection but > # it will help to avoid overfitting to unimodal features that > # are not parallel to the axes (unimodal distribution often becomes > # splitted in two or more clusters in these cases) > > > proc.time() user system elapsed 7.139 0.688 7.784
netresponse.Rcheck/tests/mixture.model.test.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Validate mixture models > > # Generate random data from five Gaussians. > # Detect modes > # Plot data points and detected clusters > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.5 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > #fs <- list.files("~/Rpackages/netresponse/netresponse/R/", full.names = TRUE); for (f in fs) {source(f)}; dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > ######### Generate DATA ####################### > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > par(mfrow = c(2,1)) > > for (mm in c("vdp", "bic")) { + + # Fit nonparametric Gaussian mixture model + #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") + out <- mixture.model(D, mixture.method = mm, max.responses = 10, pca.basis = FALSE) + + ############################################################ + + # Compare input data and results + + ord.out <- order(out$mu[,1]) + ord.in <- order(component.means[,1]) + + means.out <- out$mu[ord.out,] + means.in <- component.means[ord.in,] + + # Cluster stds and variances + sds.out <- out$sd[ord.out,] + vars.out <- sds.out^2 + + sds.in <- component.sds[ord.in,] + vars.in <- sds.in^2 + + # Check correspondence between input and output + if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } + + # Plot results (assuming 2D) + ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) + + real.modes <- sample2comp + obs.modes <- apply(out$qofz, 1, which.max) + + # plot(D, pch = 20, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + plot(D, pch = real.modes, col = obs.modes, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran) + for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } + for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } + + } > > > proc.time() user system elapsed 4.659 0.577 5.176
netresponse.Rcheck/tests/mixture.model.test.singlemode.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + + library(netresponse) + + # SINGLE MODE + + # Produce test data that has full covariance + # It is expected that + # pca.basis = FALSE splits Gaussian with full covariance into two modes + # pca.basis = TRUE should detect just a single mode + + Ns <- 200 + Nd <- 2 + k <- 1.5 + + D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,k), c(k,1)) + + par(mfrow = c(2,2)) + for (mm in c("vdp", "bic")) { + for (pp in c(FALSE, TRUE)) { + + # Fit nonparametric Gaussian mixture model + out <- mixture.model(D2, mixture.method = mm, pca.basis = pp) + plot(D2, col = apply(out$qofz, 1, which.max), main = paste("mm:" , mm, "/ pp:", pp)) + + } + } + + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.5 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > > proc.time() user system elapsed 4.689 0.575 5.209
netresponse.Rcheck/tests/timing.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # Play with different options and check their effect on running times for bic and vdp > > skip <- TRUE > > if (!skip) { + + Ns <- 100 + Nd <- 2 + + set.seed(3488400) + + D <- cbind( + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ), + + rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd), + matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd), + cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3)) + ) + ) + + rownames(D) <- paste("R", 1:nrow(D), sep = "-") + colnames(D) <- paste("C", 1:ncol(D), sep = "-") + + ts <- c() + for (mm in c("bic", "vdp")) { + + + # NOTE: no PCA basis needed with mixture.method = "bic" + tt <- system.time(detect.responses(D, verbose = TRUE, max.responses = 5, + mixture.method = mm, information.criterion = "BIC", + merging.threshold = 0, bic.threshold = 0, pca.basis = TRUE)) + + print(paste(mm, ":", round(tt[["elapsed"]], 3))) + ts[[mm]] <- tt[["elapsed"]] + } + + print(paste(names(ts)[[1]], "/", names(ts)[[2]], ": ", round(ts[[1]]/ts[[2]], 3))) + + } > > # -> VDP is much faster when sample sizes increase > # 1000 samples -> 25-fold speedup with VDP > > > > proc.time() user system elapsed 0.305 0.130 0.377
netresponse.Rcheck/tests/toydata2.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # Generate Nc components from normal-inverseGamma prior > > set.seed(12346) > > Ns <- 300 > Nd <- 2 > > # Isotropic cloud > D1 <- matrix(rnorm(Ns*Nd), ncol = Nd) > > # Single diagonal mode > D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,2), c(2,1)) > > # Two isotropic modes > D3 <- rbind(matrix(rnorm(Ns/2*Nd), ncol = Nd), matrix(rnorm(Ns/2*Nd, mean = 3), ncol = Nd)) > D <- cbind(D1, D2, D3) > > colnames(D) <- paste("Feature-", 1:ncol(D), sep = "") > rownames(D) <- paste("Sample-", 1:nrow(D), sep = "") > > > proc.time() user system elapsed 0.388 0.152 0.486
netresponse.Rcheck/tests/validate.netresponse.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + + # 2. netresponse test + # test later with varying parameters + + # Load the package + library(netresponse) + #load("../data/toydata.rda") + fs <- list.files("../R/", full.names = TRUE); for (f in fs) {source(f)}; + + data(toydata) + + D <- toydata$emat + netw <- toydata$netw + + # The toy data is random data with 10 features (genes). + # The features + rf <- c(4, 5, 6) + #form a subnetwork with coherent responses + # with means + r1 <- c(0, 3, 0) + r2 <- c(-5, 0, 2) + r3 <- c(5, -3, -3) + mu.real <- rbind(r1, r2, r3) + # real weights + w.real <- c(70, 70, 60)/200 + # and unit variances + rv <- 1 + + # Fit the model + #res <- detect.responses(D, netw, verbose = TRUE, mc.cores = 2) + #res <- detect.responses(D, netw, verbose = TRUE, max.responses = 4) + + res <- detect.responses(D, netw, verbose = TRUE, max.responses = 3, mixture.method = "bic", information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + print("OK") + + # Subnets (each is a list of nodes) + subnets <- get.subnets(res) + + # the correct subnet is retrieved in subnet number 2: + #> subnet[[2]] + #[1] "feat4" "feat5" "feat6" + + # how about responses + # Retrieve model for the subnetwork with lowest cost function value + # means, standard devations and weights for the components + if (!is.null(subnets)) { + m <- get.model.parameters(res, subnet.id = "Subnet-2") + + # order retrieved and real response means by the first feature + # (to ensure responses are listed in the same order) + # and compare deviation from correct solution + ord.obs <- order(m$mu[,1]) + ord.real <- order(mu.real[,1]) + + print(paste("Correlation between real and observed responses:", cor(as.vector(m$mu[ord.obs,]), as.vector(mu.real[ord.real,])))) + + # all real variances are 1, compare to observed ones + print(paste("Maximum deviation from real variances: ", max(abs(rv - range(m$sd))/rv))) + + # weights deviate somewhat, this is likely due to relatively small sample size + #print("Maximum deviation from real weights: ") + #print( (w.real[ord.real] - m$w[ord.obs])/w.real[ord.real]) + + print("estimated and real mean matrices") + print(m$mu[ord.obs,]) + print(mu.real[ord.real,]) + + } + + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.5 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 8 2 / 8 3 / 8 4 / 8 5 / 8 6 / 8 7 / 8 8 / 8 Compute cost for each variable Computing model for node 1 / 10 Computing model for node 2 / 10 Computing model for node 3 / 10 Computing model for node 4 / 10 Computing model for node 5 / 10 Computing model for node 6 / 10 Computing model for node 7 / 10 Computing model for node 8 / 10 Computing model for node 9 / 10 Computing model for node 10 / 10 independent models done Computing delta values for edge 1 / 29 Computing delta values for edge 2 / 29 Computing delta values for edge 3 / 29 Computing delta values for edge 4 / 29 Computing delta values for edge 5 / 29 Computing delta values for edge 6 / 29 Computing delta values for edge 7 / 29 Computing delta values for edge 8 / 29 Computing delta values for edge 9 / 29 Computing delta values for edge 10 / 29 Computing delta values for edge 11 / 29 Computing delta values for edge 12 / 29 Computing delta values for edge 13 / 29 Computing delta values for edge 14 / 29 Computing delta values for edge 15 / 29 Computing delta values for edge 16 / 29 Computing delta values for edge 17 / 29 Computing delta values for edge 18 / 29 Computing delta values for edge 19 / 29 Computing delta values for edge 20 / 29 Computing delta values for edge 21 / 29 Computing delta values for edge 22 / 29 Computing delta values for edge 23 / 29 Computing delta values for edge 24 / 29 Computing delta values for edge 25 / 29 Computing delta values for edge 26 / 29 Computing delta values for edge 27 / 29 Computing delta values for edge 28 / 29 Computing delta values for edge 29 / 29 Combining groups, 10 group(s) left... Combining groups, 9 group(s) left... Combining groups, 8 group(s) left... Combining groups, 7 group(s) left... Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... [1] "OK" [1] "Correlation between real and observed responses: 0.999117848017521" [1] "Maximum deviation from real variances: 0.0391530538149302" [1] "estimated and real mean matrices" [,1] [,2] [,3] [1,] -4.9334982 -0.1575946 2.1613225 [2,] -0.1299285 3.0047767 -0.1841669 [3,] 5.0738471 -2.9334877 -3.2217492 [,1] [,2] [,3] r2 -5 0 2 r1 0 3 0 r3 5 -3 -3 > > proc.time() user system elapsed 45.303 1.038 46.295
netresponse.Rcheck/tests/validate.pca.basis.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > skip <- FALSE > > if (!skip) { + # Visualization + + library(netresponse) + + #fs <- list.files("~/Rpackages/netresponse/netresponse/R/", full.names = T); for (f in fs) {source(f)} + + source("toydata2.R") + + # -------------------------------------------------------------------- + + set.seed(4243) + mixture.method <- "bic" + + # -------------------------------------------------------------------- + + res <- detect.responses(D, verbose = TRUE, max.responses = 10, + mixture.method = mixture.method, information.criterion = "BIC", + merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE) + + res.pca <- detect.responses(D, verbose = TRUE, max.responses = 10, mixture.method = mixture.method, information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = TRUE) + + # -------------------------------------------------------------------- + + k <- 1 + + # Incorrect VDP: two modes detected + # Correct BIC: single mode detected + subnet.id <- names(get.subnets(res))[[k]] + + # Correct: single mode detected (VDP & BIC) + subnet.id.pca <- names(get.subnets(res.pca))[[k]] + + # -------------------------------------------------------------------------------------------------- + + vis1 <- plot_responses(res, subnet.id, plot_mode = "pca", main = paste("NoPCA; NoDM")) + vis2 <- plot_responses(res, subnet.id, plot_mode = "pca", datamatrix = D, main = "NoPCA, DM") + vis3 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", main = "PCA, NoDM") + vis4 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", datamatrix = D, main = "PCA, DM") + + # With original data: VDP overlearns; BIC works; with full covariance data + # With PCA basis: modes detected ok with both VDP and BIC. + + # ------------------------------------------------------------------------ + + # TODO + # pca.plot(res, subnet.id) + # plot_subnet(res, subnet.id) + } Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.5 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... convert the network into edge matrix removing self-links matching the features between network and datamatrix Filter the network to only keep the edges with highest mutual information 1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 Compute cost for each variable Computing model for node 1 / 6 Computing model for node 2 / 6 Computing model for node 3 / 6 Computing model for node 4 / 6 Computing model for node 5 / 6 Computing model for node 6 / 6 independent models done Computing delta values for edge 1 / 15 Computing delta values for edge 2 / 15 Computing delta values for edge 3 / 15 Computing delta values for edge 4 / 15 Computing delta values for edge 5 / 15 Computing delta values for edge 6 / 15 Computing delta values for edge 7 / 15 Computing delta values for edge 8 / 15 Computing delta values for edge 9 / 15 Computing delta values for edge 10 / 15 Computing delta values for edge 11 / 15 Computing delta values for edge 12 / 15 Computing delta values for edge 13 / 15 Computing delta values for edge 14 / 15 Computing delta values for edge 15 / 15 Combining groups, 6 group(s) left... Combining groups, 5 group(s) left... Combining groups, 4 group(s) left... Combining groups, 3 group(s) left... Warning messages: 1: In check.network(network, datamatrix, verbose = verbose) : No network provided in function call: assuming fully connected nodes. 2: In check.network(network, datamatrix, verbose = verbose) : No network provided in function call: assuming fully connected nodes. > > proc.time() user system elapsed 28.722 1.114 29.783
netresponse.Rcheck/tests/vdpmixture.Rout
R version 3.6.1 (2019-07-05) -- "Action of the Toes" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin15.6.0 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > > # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla > # -> ainakin nopea check > > ####################################################################### > > # Generate random data from five Gaussians. > # Detect modes with vdp-gm. > # Plot data points and detected clusters with variance ellipses > > ####################################################################### > > library(netresponse) Loading required package: Rgraphviz Loading required package: graph Loading required package: BiocGenerics Loading required package: parallel Attaching package: 'BiocGenerics' The following objects are masked from 'package:parallel': clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from 'package:stats': IQR, mad, sd, var, xtabs The following objects are masked from 'package:base': Filter, Find, Map, Position, Reduce, anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted, lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which, which.max, which.min Loading required package: grid Loading required package: minet Loading required package: mclust Package 'mclust' version 5.4.5 Type 'citation("mclust")' for citing this R package in publications. Loading required package: reshape2 netresponse (C) 2008-2016 Leo Lahti et al. https://github.com/antagomir/netresponse > #source("~/Rpackages/netresponse/netresponse/R/detect.responses.R") > #source("~/Rpackages/netresponse/netresponse/R/internals.R") > #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R") > #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so") > > > ######### Generate DATA ############################################# > > res <- generate.toydata() > D <- res$data > component.means <- res$means > component.sds <- res$sds > sample2comp <- res$sample2comp > > ###################################################################### > > # Fit nonparametric Gaussian mixture model > out <- vdp.mixt(D) > # out <- vdp.mixt(D, c.max = 3) # try with limited number of components -> OK > > ############################################################ > > # Compare input data and results > > ord.out <- order(out$posterior$centroids[,1]) > ord.in <- order(component.means[,1]) > > means.out <- out$posterior$centroids[ord.out,] > means.in <- component.means[ord.in,] > > # Cluster stds and variances > sds.out <- out$posterior$sds[ord.out,] > sds.in <- component.sds[ord.in,] > vars.out <- sds.out^2 > vars.in <- sds.in^2 > > # Check correspondence between input and output > if (length(means.in) == length(means.out)) { + cm <- cor(as.vector(means.in), as.vector(means.out)) + csd <- cor(as.vector(sds.in), as.vector(sds.out)) + } > > # Plot results (assuming 2D) > > ran <- range(c(as.vector(means.in - 2*vars.in), + as.vector(means.in + 2*vars.in), + as.vector(means.out + 2*vars.out), + as.vector(means.out - 2*vars.out))) > > plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran) > for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") } > for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") } > > > > proc.time() user system elapsed 3.697 0.497 4.147
netresponse.Rcheck/netresponse-Ex.timings
name | user | system | elapsed | |
ICMg.combined.sampler | 46.461 | 0.202 | 53.401 | |
ICMg.links.sampler | 2.191 | 0.027 | 2.218 | |
NetResponseModel-class | 0.001 | 0.000 | 0.002 | |
PlotMixture | 0 | 0 | 0 | |
PlotMixtureBivariate | 0.000 | 0.000 | 0.001 | |
PlotMixtureMultivariate | 0.001 | 0.000 | 0.001 | |
PlotMixtureMultivariate.deprecated | 0.000 | 0.001 | 0.001 | |
PlotMixtureUnivariate | 0 | 0 | 0 | |
add.ellipse | 0.001 | 0.000 | 0.001 | |
centerData | 0.000 | 0.001 | 0.001 | |
check.matrix | 0 | 0 | 0 | |
check.network | 0 | 0 | 0 | |
detect.responses | 0.002 | 0.002 | 0.005 | |
dna | 0.028 | 0.011 | 0.038 | |
enrichment.list.factor | 0.000 | 0.000 | 0.001 | |
enrichment.list.factor.minimal | 0 | 0 | 0 | |
filter.netw | 0.000 | 0.001 | 0.000 | |
filter.network | 0.001 | 0.000 | 0.001 | |
find.similar.features | 0.688 | 0.131 | 0.822 | |
generate.toydata | 0 | 0 | 0 | |
get.dat-NetResponseModel-method | 0 | 0 | 0 | |
get.mis | 0 | 0 | 0 | |
get.model.parameters | 0.005 | 0.004 | 0.009 | |
get.subnets-NetResponseModel-method | 0.000 | 0.000 | 0.001 | |
getqofz-NetResponseModel-method | 0 | 0 | 0 | |
independent.models | 0 | 0 | 0 | |
list.significant.responses | 0 | 0 | 0 | |
listify.groupings | 0.001 | 0.000 | 0.001 | |
model.stats | 0.004 | 0.003 | 0.008 | |
netresponse-package | 5.015 | 0.313 | 5.327 | |
order.responses | 0.000 | 0.000 | 0.001 | |
osmo | 0.057 | 0.011 | 0.068 | |
pick.model.pairs | 0.001 | 0.001 | 0.001 | |
pick.model.parameters | 0.000 | 0.000 | 0.001 | |
plotPCA | 0 | 0 | 0 | |
plot_associations | 0.000 | 0.000 | 0.001 | |
plot_data | 0.001 | 0.001 | 0.001 | |
plot_expression | 0 | 0 | 0 | |
plot_matrix | 0.011 | 0.001 | 0.012 | |
plot_response | 0.000 | 0.000 | 0.001 | |
plot_responses | 0.000 | 0.000 | 0.001 | |
plot_scale | 0.001 | 0.001 | 0.000 | |
plot_subnet | 0.000 | 0.000 | 0.001 | |
read.sif | 0.001 | 0.000 | 0.001 | |
remove.negative.edges | 0 | 0 | 0 | |
response.enrichment | 0.000 | 0.000 | 0.001 | |
response2sample | 0.009 | 0.006 | 0.016 | |
sample2response | 0.000 | 0.001 | 0.001 | |
set.breaks | 0.001 | 0.000 | 0.001 | |
toydata | 0.003 | 0.002 | 0.006 | |
update.model.pair | 0 | 0 | 0 | |
vdp.mixt | 0.074 | 0.004 | 0.076 | |
vectorize.groupings | 0.000 | 0.000 | 0.001 | |
write.netresponse.results | 0.001 | 0.000 | 0.000 | |