Back to Multiple platform build/check report for BioC 3.9 |
|
This page was generated on 2019-04-09 11:55:32 -0400 (Tue, 09 Apr 2019).
Package 190/1703 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||
BufferedMatrix 1.47.0 Ben Bolstad
| malbec2 | Linux (Ubuntu 18.04.2 LTS) / x86_64 | OK | OK | OK | |||||||
tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | [ OK ] | OK | |||||||
celaya2 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK | |||||||
merida2 | OS X 10.11.6 El Capitan / x86_64 | OK | OK | OK | OK |
Package: BufferedMatrix |
Version: 1.47.0 |
Command: C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:BufferedMatrix.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings BufferedMatrix_1.47.0.tar.gz |
StartedAt: 2019-04-09 01:29:35 -0400 (Tue, 09 Apr 2019) |
EndedAt: 2019-04-09 01:30:37 -0400 (Tue, 09 Apr 2019) |
EllapsedTime: 62.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: BufferedMatrix.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:BufferedMatrix.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings BufferedMatrix_1.47.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck' * using R Under development (unstable) (2019-03-09 r76216) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'BufferedMatrix/DESCRIPTION' ... OK * this is package 'BufferedMatrix' version '1.47.0' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'BufferedMatrix' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking compiled code ... NOTE Note: information on .o files for i386 is not available Note: information on .o files for x64 is not available File 'C:/Users/biocbuild/bbs-3.9-bioc/R/library/BufferedMatrix/libs/i386/BufferedMatrix.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) File 'C:/Users/biocbuild/bbs-3.9-bioc/R/library/BufferedMatrix/libs/x64/BufferedMatrix.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) Compiled code should not call entry points which might terminate R nor write to stdout/stderr instead of to the console, nor use Fortran I/O nor system RNGs. The detected symbols are linked into the code but might come from libraries and not actually be called. See 'Writing portable packages' in the 'Writing R Extensions' manual. * checking files in 'vignettes' ... OK * checking examples ... NONE * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'Rcodetesting.R' Running 'c_code_level_tests.R' Running 'objectTesting.R' Running 'rawCalltesting.R' OK ** running tests for arch 'x64' ... Running 'Rcodetesting.R' Running 'c_code_level_tests.R' Running 'objectTesting.R' Running 'rawCalltesting.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/00check.log' for details.
BufferedMatrix.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.9/bioc/src/contrib/BufferedMatrix_1.47.0.tar.gz && rm -rf BufferedMatrix.buildbin-libdir && mkdir BufferedMatrix.buildbin-libdir && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=BufferedMatrix.buildbin-libdir BufferedMatrix_1.47.0.tar.gz && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL BufferedMatrix_1.47.0.zip && rm BufferedMatrix_1.47.0.tar.gz BufferedMatrix_1.47.0.zip ### ############################################################################## ############################################################################## % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0 100 201k 100 201k 0 0 3870k 0 --:--:-- --:--:-- --:--:-- 4377k install for i386 * installing *source* package 'BufferedMatrix' ... ** libs C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O3 -Wall -std=gnu99 -mtune=generic -c RBufferedMatrix.c -o RBufferedMatrix.o C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O3 -Wall -std=gnu99 -mtune=generic -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode': doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '˜' [-Wparentheses] if (!(Matrix->readonly) & setting){ ^ doubleBufferedMatrix.c: At top level: doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function] static int sort_double(const double *a1,const double *a2){ ^ C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O3 -Wall -std=gnu99 -mtune=generic -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o C:/Rtools/mingw_32/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O3 -Wall -std=gnu99 -mtune=generic -c init_package.c -o init_package.o C:/Rtools/mingw_32/bin/gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/extsoft/lib/i386 -LC:/extsoft/lib -LC:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/bin/i386 -lR installing to C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.buildbin-libdir/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs/i386 ** R ** inst ** byte-compile and prepare package for lazy loading Creating a new generic function for 'rowMeans' in package 'BufferedMatrix' Creating a new generic function for 'rowSums' in package 'BufferedMatrix' Creating a new generic function for 'colMeans' in package 'BufferedMatrix' Creating a new generic function for 'colSums' in package 'BufferedMatrix' Creating a generic function for 'ncol' from package 'base' in package 'BufferedMatrix' Creating a generic function for 'nrow' from package 'base' in package 'BufferedMatrix' ** help *** installing help indices converting help for package 'BufferedMatrix' finding HTML links ... done BufferedMatrix-class html as.BufferedMatrix html createBufferedMatrix html ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path install for x64 * installing *source* package 'BufferedMatrix' ... ** libs C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mtune=generic -c RBufferedMatrix.c -o RBufferedMatrix.o C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mtune=generic -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode': doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '˜' [-Wparentheses] if (!(Matrix->readonly) & setting){ ^ doubleBufferedMatrix.c: At top level: doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function] static int sort_double(const double *a1,const double *a2){ ^ C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mtune=generic -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o C:/Rtools/mingw_64/bin/gcc -I"C:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/include" -DNDEBUG -I"C:/extsoft/include" -O2 -Wall -std=gnu99 -mtune=generic -c init_package.c -o init_package.o C:/Rtools/mingw_64/bin/gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/extsoft/lib/x64 -LC:/extsoft/lib -LC:/Users/BIOCBU˜1/BBS-3˜1.9-B/R/bin/x64 -lR installing to C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.buildbin-libdir/BufferedMatrix/libs/x64 ** testing if installed package can be loaded * MD5 sums packaged installation of 'BufferedMatrix' as BufferedMatrix_1.47.0.zip * DONE (BufferedMatrix) * installing to library 'C:/Users/biocbuild/bbs-3.9-bioc/R/library' package 'BufferedMatrix' successfully unpacked and MD5 sums checked
BufferedMatrix.Rcheck/tests_i386/c_code_level_tests.Rout R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1)) Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 Adding Additional Column Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 Reassigning values 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 3 Buffer Cols: 3 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Activating Row Buffer In row mode: 1 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Squaring Last Column 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 Square rooting Last Row, then turing off Row Buffer In row mode: 0 Checking on value that should be not be in column buffer2.236068 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 Single Indexing. Assign each value its square 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Resizing Buffers Smaller Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Activating Row Mode. Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 Activating ReadOnly Mode. The results of assignment is: 0 Printing matrix reversed. 900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 [[1]] [1] 0 > > proc.time() user system elapsed 0.48 0.09 0.56 |
BufferedMatrix.Rcheck/tests_x64/c_code_level_tests.Rout R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1)) Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 Adding Additional Column Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 Reassigning values 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 3 Buffer Cols: 3 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Activating Row Buffer In row mode: 1 1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 Squaring Last Column 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 Square rooting Last Row, then turing off Row Buffer In row mode: 0 Checking on value that should be not be in column buffer2.236068 1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 Single Indexing. Assign each value its square 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Resizing Buffers Smaller Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 Activating Row Mode. Resizing Buffers Checking dimensions Rows: 5 Cols: 6 Buffer Rows: 1 Buffer Cols: 1 Activating ReadOnly Mode. The results of assignment is: 0 Printing matrix reversed. 900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 [[1]] [1] 0 > > proc.time() user system elapsed 0.48 0.06 0.53 |
BufferedMatrix.Rcheck/tests_i386/objectTesting.Rout R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > > ### this is used to control how many repetitions in something below > ### higher values result in more checks. > nreps <-100 ##20000 > > > ## test creation and some simple assignments and subsetting operations > > ## first on single elements > tmp <- createBufferedMatrix(1000,10) > > tmp[10,5] [1] 0 > tmp[10,5] <- 10 > tmp[10,5] [1] 10 > tmp[10,5] <- 12.445 > tmp[10,5] [1] 12.445 > > > > ## now testing accessing multiple elements > tmp2 <- createBufferedMatrix(10,20) > > > tmp2[3,1] <- 51.34 > tmp2[9,2] <- 9.87654 > tmp2[,1:2] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[,-(3:20)] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 51.34 0 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 > tmp2[-3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 0 > tmp2[2,1:3] [,1] [,2] [,3] [1,] 0 0 0 > tmp2[3:9,1:3] [,1] [,2] [,3] [1,] 51.34 0.00000 0 [2,] 0.00 0.00000 0 [3,] 0.00 0.00000 0 [4,] 0.00 0.00000 0 [5,] 0.00 0.00000 0 [6,] 0.00 0.00000 0 [7,] 0.00 9.87654 0 > tmp2[-4,-4] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 51.34 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0.00 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [1,] 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 > > ## now testing accessing/assigning multiple elements > tmp3 <- createBufferedMatrix(10,10) > > for (i in 1:10){ + for (j in 1:10){ + tmp3[i,j] <- (j-1)*10 + i + } + } > > tmp3[2:4,2:4] [,1] [,2] [,3] [1,] 12 22 32 [2,] 13 23 33 [3,] 14 24 34 > tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 11 21 31 11 21 31 91 1 11 1 11 21 31 [2,] 12 22 32 12 22 32 92 2 12 2 12 22 32 [3,] 13 23 33 13 23 33 93 3 13 3 13 23 33 [4,] 14 24 34 14 24 34 94 4 14 4 14 24 34 [5,] 15 25 35 15 25 35 95 5 15 5 15 25 35 [6,] 16 26 36 16 26 36 96 6 16 6 16 26 36 [7,] 17 27 37 17 27 37 97 7 17 7 17 27 37 [8,] 18 28 38 18 28 38 98 8 18 8 18 28 38 [9,] 19 29 39 19 29 39 99 9 19 9 19 29 39 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [1,] 41 51 61 71 81 91 91 81 71 61 51 41 [2,] 42 52 62 72 82 92 92 82 72 62 52 42 [3,] 43 53 63 73 83 93 93 83 73 63 53 43 [4,] 44 54 64 74 84 94 94 84 74 64 54 44 [5,] 45 55 65 75 85 95 95 85 75 65 55 45 [6,] 46 56 66 76 86 96 96 86 76 66 56 46 [7,] 47 57 67 77 87 97 97 87 77 67 57 47 [8,] 48 58 68 78 88 98 98 88 78 68 58 48 [9,] 49 59 69 79 89 99 99 89 79 69 59 49 [,26] [,27] [,28] [,29] [1,] 31 21 11 1 [2,] 32 22 12 2 [3,] 33 23 13 3 [4,] 34 24 14 4 [5,] 35 25 15 5 [6,] 36 26 16 6 [7,] 37 27 17 7 [8,] 38 28 18 8 [9,] 39 29 19 9 > tmp3[-c(1:5),-c(6:10)] [,1] [,2] [,3] [,4] [,5] [1,] 6 16 26 36 46 [2,] 7 17 27 37 47 [3,] 8 18 28 38 48 [4,] 9 19 29 39 49 [5,] 10 20 30 40 50 > > ## assignment of whole columns > tmp3[,1] <- c(1:10*100.0) > tmp3[,1:2] <- tmp3[,1:2]*100 > tmp3[,1:2] <- tmp3[,2:1] > tmp3[,1:2] [,1] [,2] [1,] 1100 1e+04 [2,] 1200 2e+04 [3,] 1300 3e+04 [4,] 1400 4e+04 [5,] 1500 5e+04 [6,] 1600 6e+04 [7,] 1700 7e+04 [8,] 1800 8e+04 [9,] 1900 9e+04 [10,] 2000 1e+05 > > > tmp3[,-1] <- tmp3[,1:9] > tmp3[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1100 1100 1e+04 21 31 41 51 61 71 81 [2,] 1200 1200 2e+04 22 32 42 52 62 72 82 [3,] 1300 1300 3e+04 23 33 43 53 63 73 83 [4,] 1400 1400 4e+04 24 34 44 54 64 74 84 [5,] 1500 1500 5e+04 25 35 45 55 65 75 85 [6,] 1600 1600 6e+04 26 36 46 56 66 76 86 [7,] 1700 1700 7e+04 27 37 47 57 67 77 87 [8,] 1800 1800 8e+04 28 38 48 58 68 78 88 [9,] 1900 1900 9e+04 29 39 49 59 69 79 89 [10,] 2000 2000 1e+05 30 40 50 60 70 80 90 > > tmp3[,1:2] <- rep(1,10) > tmp3[,1:2] <- rep(1,20) > tmp3[,1:2] <- matrix(c(1:5),1,5) > > tmp3[,-c(1:8)] <- matrix(c(1:5),1,5) > > tmp3[1,] <- 1:10 > tmp3[1,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 > tmp3[-1,] <- c(1,2) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 2 1 2 1 2 1 2 1 2 1 [10,] 1 2 1 2 1 2 1 2 1 2 > tmp3[-c(1:8),] <- matrix(c(1:5),1,5) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 1 3 5 2 4 1 3 5 2 4 [10,] 2 4 1 3 5 2 4 1 3 5 > > > tmp3[1:2,1:2] <- 5555.04 > tmp3[-(1:2),1:2] <- 1234.56789 > > > > ## testing accessors for the directory and prefix > directory(tmp3) [1] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386" > prefix(tmp3) [1] "BM" > > ## testing if we can remove these objects > rm(tmp, tmp2, tmp3) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 406204 12.4 843631 25.8 633902 19.4 Vcells 461263 3.6 8388608 64.0 1444655 11.1 > > > > > ## > ## checking reads > ## > > tmp2 <- createBufferedMatrix(10,20) > > test.sample <- rnorm(10*20) > > tmp2[1:10,1:20] <- test.sample > > test.matrix <- matrix(test.sample,10,20) > > ## testing reads > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Tue Apr 09 01:30:07 2019" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Tue Apr 09 01:30:07 2019" > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > > > RowMode(tmp2) <pointer: 0x0350e438> > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Tue Apr 09 01:30:10 2019" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Tue Apr 09 01:30:11 2019" > > ColMode(tmp2) <pointer: 0x0350e438> > > > > ### Now testing assignments > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + + new.data <- rnorm(20) + tmp2[which.row,] <- new.data + test.matrix[which.row,] <- new.data + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + new.data <- rnorm(10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[which.row,] <- new.data + test.matrix[which.row,]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + } > > > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(25),5,5) + tmp2[which.row,which.col] <- new.data + test.matrix[which.row,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + prev.col <- which.col + } > > > > > ### > ### > ### testing some more functions > ### > > > > ## duplication function > tmp5 <- duplicate(tmp2) > > # making sure really did copy everything. > tmp5[1,1] <- tmp5[1,1] +100.00 > > if (tmp5[1,1] == tmp2[1,1]){ + stop("Problem with duplication") + } > > > > > ### testing elementwise applying of functions > > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 100.9418987 -0.2394817 -0.343767106 -1.0072137 [2,] -0.5856183 -0.3748648 0.007802693 1.0146208 [3,] 0.8720396 0.6683828 -0.906075835 -0.4996621 [4,] 0.5553655 -0.7215628 -0.860752499 -0.5840320 > ewApply(tmp5,abs) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 100.9418987 0.2394817 0.343767106 1.0072137 [2,] 0.5856183 0.3748648 0.007802693 1.0146208 [3,] 0.8720396 0.6683828 0.906075835 0.4996621 [4,] 0.5553655 0.7215628 0.860752499 0.5840320 > ewApply(tmp5,sqrt) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 10.0469846 0.4893687 0.58631656 1.0036004 [2,] 0.7652570 0.6122621 0.08833286 1.0072839 [3,] 0.9338306 0.8175468 0.95188016 0.7068678 [4,] 0.7452285 0.8494485 0.92776748 0.7642199 > > my.function <- function(x,power){ + (x+5)^power + } > > ewApply(tmp5,my.function,power=2) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 226.41174 30.13317 31.20693 36.04322 [2,] 33.23819 31.49749 25.89113 36.08746 [3,] 35.21035 33.84385 35.42488 32.56834 [4,] 33.00765 34.21605 35.13843 33.22623 > > > > ## testing functions that elementwise transform the matrix > sqrt(tmp5) <pointer: 0x02c8adf8> > exp(tmp5) <pointer: 0x02c8adf8> > log(tmp5,2) <pointer: 0x02c8adf8> > pow(tmp5,2) > > > > > > ## testing functions that apply to entire matrix > Max(tmp5) [1] 471.2464 > Min(tmp5) [1] 53.889 > mean(tmp5) [1] 73.70547 > Sum(tmp5) [1] 14741.09 > Var(tmp5) [1] 863.1224 > > > ## testing functions applied to rows or columns > > rowMeans(tmp5) [1] 89.73721 70.62778 70.48600 71.29639 73.17528 71.45798 71.93369 73.52780 [9] 69.86289 74.94968 > rowSums(tmp5) [1] 1794.744 1412.556 1409.720 1425.928 1463.506 1429.160 1438.674 1470.556 [9] 1397.258 1498.994 > rowVars(tmp5) [1] 8117.82884 76.65804 52.39034 58.69210 75.59487 76.78871 [7] 85.51190 49.53013 43.57137 79.84824 > rowSd(tmp5) [1] 90.098995 8.755458 7.238117 7.661077 8.694531 8.762917 9.247265 [8] 7.037764 6.600861 8.935784 > rowMax(tmp5) [1] 471.24638 89.02108 85.60840 84.66920 86.71282 85.31906 89.70790 [8] 84.93844 80.00303 96.90702 > rowMin(tmp5) [1] 59.19470 53.88900 58.01875 54.43457 57.39639 54.46275 57.13893 62.34532 [9] 59.63830 56.76708 > > colMeans(tmp5) [1] 114.01595 69.20757 71.12213 73.78554 70.64346 72.20419 71.49668 [8] 69.03913 74.63422 70.04595 72.38399 74.60640 72.01425 72.45217 [15] 75.04244 67.20937 69.92657 72.53416 69.39374 72.35151 > colSums(tmp5) [1] 1140.1595 692.0757 711.2213 737.8554 706.4346 722.0419 714.9668 [8] 690.3913 746.3422 700.4595 723.8399 746.0640 720.1425 724.5217 [15] 750.4244 672.0937 699.2657 725.3416 693.9374 723.5151 > colVars(tmp5) [1] 15805.52289 44.92069 161.86804 44.82280 109.65405 74.65377 [7] 34.06995 48.10281 34.59675 60.40063 95.17144 29.15390 [13] 97.86470 65.84343 37.12545 57.58831 109.46022 35.37320 [19] 53.14789 94.77046 > colSd(tmp5) [1] 125.720018 6.702290 12.722737 6.694983 10.471583 8.640241 [7] 5.836947 6.935619 5.881900 7.771785 9.755585 5.399435 [13] 9.892659 8.114397 6.093066 7.588696 10.462324 5.947537 [19] 7.290260 9.735012 > colMax(tmp5) [1] 471.24638 80.70323 96.90702 83.41684 85.60840 81.10426 80.89049 [8] 80.07025 79.25293 82.24223 89.02108 82.34249 89.70790 87.10182 [15] 83.14948 81.59658 84.93844 80.13589 81.78115 86.71282 > colMin(tmp5) [1] 64.60301 60.93580 53.88900 63.07088 56.76708 56.65598 62.34532 58.73089 [9] 61.69008 59.65463 59.63830 66.67394 54.43457 59.19470 64.11696 54.46275 [17] 57.39639 63.91636 60.26641 59.80018 > > > ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default) > > > which.row <- sample(1:10,1,replace=TRUE) > which.col <- sample(1:20,1,replace=TRUE) > > tmp5[which.row,which.col] <- NA > > Max(tmp5) [1] NA > Min(tmp5) [1] NA > mean(tmp5) [1] NA > Sum(tmp5) [1] NA > Var(tmp5) [1] NA > > rowMeans(tmp5) [1] 89.73721 NA 70.48600 71.29639 73.17528 71.45798 71.93369 73.52780 [9] 69.86289 74.94968 > rowSums(tmp5) [1] 1794.744 NA 1409.720 1425.928 1463.506 1429.160 1438.674 1470.556 [9] 1397.258 1498.994 > rowVars(tmp5) [1] 8117.82884 72.15625 52.39034 58.69210 75.59487 76.78871 [7] 85.51190 49.53013 43.57137 79.84824 > rowSd(tmp5) [1] 90.098995 8.494484 7.238117 7.661077 8.694531 8.762917 9.247265 [8] 7.037764 6.600861 8.935784 > rowMax(tmp5) [1] 471.24638 NA 85.60840 84.66920 86.71282 85.31906 89.70790 [8] 84.93844 80.00303 96.90702 > rowMin(tmp5) [1] 59.19470 NA 58.01875 54.43457 57.39639 54.46275 57.13893 62.34532 [9] 59.63830 56.76708 > > colMeans(tmp5) [1] 114.01595 69.20757 71.12213 73.78554 70.64346 72.20419 71.49668 [8] 69.03913 74.63422 70.04595 72.38399 74.60640 72.01425 72.45217 [15] 75.04244 67.20937 69.92657 72.53416 69.39374 NA > colSums(tmp5) [1] 1140.1595 692.0757 711.2213 737.8554 706.4346 722.0419 714.9668 [8] 690.3913 746.3422 700.4595 723.8399 746.0640 720.1425 724.5217 [15] 750.4244 672.0937 699.2657 725.3416 693.9374 NA > colVars(tmp5) [1] 15805.52289 44.92069 161.86804 44.82280 109.65405 74.65377 [7] 34.06995 48.10281 34.59675 60.40063 95.17144 29.15390 [13] 97.86470 65.84343 37.12545 57.58831 109.46022 35.37320 [19] 53.14789 NA > colSd(tmp5) [1] 125.720018 6.702290 12.722737 6.694983 10.471583 8.640241 [7] 5.836947 6.935619 5.881900 7.771785 9.755585 5.399435 [13] 9.892659 8.114397 6.093066 7.588696 10.462324 5.947537 [19] 7.290260 NA > colMax(tmp5) [1] 471.24638 80.70323 96.90702 83.41684 85.60840 81.10426 80.89049 [8] 80.07025 79.25293 82.24223 89.02108 82.34249 89.70790 87.10182 [15] 83.14948 81.59658 84.93844 80.13589 81.78115 NA > colMin(tmp5) [1] 64.60301 60.93580 53.88900 63.07088 56.76708 56.65598 62.34532 58.73089 [9] 61.69008 59.65463 59.63830 66.67394 54.43457 59.19470 64.11696 54.46275 [17] 57.39639 63.91636 60.26641 NA > > Max(tmp5,na.rm=TRUE) [1] 471.2464 > Min(tmp5,na.rm=TRUE) [1] 53.889 > mean(tmp5,na.rm=TRUE) [1] 73.65943 > Sum(tmp5,na.rm=TRUE) [1] 14658.23 > Var(tmp5,na.rm=TRUE) [1] 867.0556 > > rowMeans(tmp5,na.rm=TRUE) [1] 89.73721 69.98359 70.48600 71.29639 73.17528 71.45798 71.93369 73.52780 [9] 69.86289 74.94968 > rowSums(tmp5,na.rm=TRUE) [1] 1794.744 1329.688 1409.720 1425.928 1463.506 1429.160 1438.674 1470.556 [9] 1397.258 1498.994 > rowVars(tmp5,na.rm=TRUE) [1] 8117.82884 72.15625 52.39034 58.69210 75.59487 76.78871 [7] 85.51190 49.53013 43.57137 79.84824 > rowSd(tmp5,na.rm=TRUE) [1] 90.098995 8.494484 7.238117 7.661077 8.694531 8.762917 9.247265 [8] 7.037764 6.600861 8.935784 > rowMax(tmp5,na.rm=TRUE) [1] 471.24638 89.02108 85.60840 84.66920 86.71282 85.31906 89.70790 [8] 84.93844 80.00303 96.90702 > rowMin(tmp5,na.rm=TRUE) [1] 59.19470 53.88900 58.01875 54.43457 57.39639 54.46275 57.13893 62.34532 [9] 59.63830 56.76708 > > colMeans(tmp5,na.rm=TRUE) [1] 114.01595 69.20757 71.12213 73.78554 70.64346 72.20419 71.49668 [8] 69.03913 74.63422 70.04595 72.38399 74.60640 72.01425 72.45217 [15] 75.04244 67.20937 69.92657 72.53416 69.39374 71.18309 > colSums(tmp5,na.rm=TRUE) [1] 1140.1595 692.0757 711.2213 737.8554 706.4346 722.0419 714.9668 [8] 690.3913 746.3422 700.4595 723.8399 746.0640 720.1425 724.5217 [15] 750.4244 672.0937 699.2657 725.3416 693.9374 640.6478 > colVars(tmp5,na.rm=TRUE) [1] 15805.52289 44.92069 161.86804 44.82280 109.65405 74.65377 [7] 34.06995 48.10281 34.59675 60.40063 95.17144 29.15390 [13] 97.86470 65.84343 37.12545 57.58831 109.46022 35.37320 [19] 53.14789 91.25819 > colSd(tmp5,na.rm=TRUE) [1] 125.720018 6.702290 12.722737 6.694983 10.471583 8.640241 [7] 5.836947 6.935619 5.881900 7.771785 9.755585 5.399435 [13] 9.892659 8.114397 6.093066 7.588696 10.462324 5.947537 [19] 7.290260 9.552915 > colMax(tmp5,na.rm=TRUE) [1] 471.24638 80.70323 96.90702 83.41684 85.60840 81.10426 80.89049 [8] 80.07025 79.25293 82.24223 89.02108 82.34249 89.70790 87.10182 [15] 83.14948 81.59658 84.93844 80.13589 81.78115 86.71282 > colMin(tmp5,na.rm=TRUE) [1] 64.60301 60.93580 53.88900 63.07088 56.76708 56.65598 62.34532 58.73089 [9] 61.69008 59.65463 59.63830 66.67394 54.43457 59.19470 64.11696 54.46275 [17] 57.39639 63.91636 60.26641 59.80018 > > # now set an entire row to NA > > tmp5[which.row,] <- NA > rowMeans(tmp5,na.rm=TRUE) [1] 89.73721 NaN 70.48600 71.29639 73.17528 71.45798 71.93369 73.52780 [9] 69.86289 74.94968 > rowSums(tmp5,na.rm=TRUE) [1] 1794.744 0.000 1409.720 1425.928 1463.506 1429.160 1438.674 1470.556 [9] 1397.258 1498.994 > rowVars(tmp5,na.rm=TRUE) [1] 8117.82884 NA 52.39034 58.69210 75.59487 76.78871 [7] 85.51190 49.53013 43.57137 79.84824 > rowSd(tmp5,na.rm=TRUE) [1] 90.098995 NA 7.238117 7.661077 8.694531 8.762917 9.247265 [8] 7.037764 6.600861 8.935784 > rowMax(tmp5,na.rm=TRUE) [1] 471.24638 NA 85.60840 84.66920 86.71282 85.31906 89.70790 [8] 84.93844 80.00303 96.90702 > rowMin(tmp5,na.rm=TRUE) [1] 59.19470 NA 58.01875 54.43457 57.39639 54.46275 57.13893 62.34532 [9] 59.63830 56.76708 > > > # now set an entire col to NA > > > tmp5[,which.col] <- NA > colMeans(tmp5,na.rm=TRUE) [1] 118.99762 69.61309 73.03692 73.63823 71.70193 71.66575 71.59180 [8] 68.39548 74.12103 68.70264 70.53542 75.48778 73.08376 72.52201 [15] 75.36085 67.00416 71.17227 73.25928 69.87558 NaN > colSums(tmp5,na.rm=TRUE) [1] 1070.9785 626.5178 657.3323 662.7441 645.3174 644.9917 644.3262 [8] 615.5593 667.0892 618.3238 634.8188 679.3900 657.7538 652.6981 [15] 678.2477 603.0374 640.5504 659.3335 628.8803 0.0000 > colVars(tmp5,na.rm=TRUE) [1] 17502.02180 48.68575 140.85420 50.18153 110.75661 80.72391 [7] 38.22690 49.45494 35.95850 47.65041 68.62440 24.05871 [13] 97.22939 74.01898 40.62552 64.31312 105.68528 33.87963 [19] 57.17939 NA > colSd(tmp5,na.rm=TRUE) [1] 132.295207 6.977517 11.868201 7.083892 10.524097 8.984649 [7] 6.182791 7.032421 5.996541 6.902928 8.283985 4.904968 [13] 9.860497 8.603429 6.373815 8.019546 10.280335 5.820621 [19] 7.561706 NA > colMax(tmp5,na.rm=TRUE) [1] 471.24638 80.70323 96.90702 83.41684 85.60840 81.10426 80.89049 [8] 80.07025 79.15431 82.24223 82.10595 82.34249 89.70790 87.10182 [15] 83.14948 81.59658 84.93844 80.13589 81.78115 -Inf > colMin(tmp5,na.rm=TRUE) [1] 64.60301 60.93580 57.13893 63.07088 56.76708 56.65598 62.34532 58.73089 [9] 61.69008 59.65463 59.63830 67.77133 54.43457 59.19470 64.11696 54.46275 [17] 57.39639 63.91636 60.26641 Inf > > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 3 > which.col <- 1 > cat(which.row," ",which.col,"\n") 3 1 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > rowVars(tmp5,na.rm=TRUE) [1] 190.0765 253.4853 136.1727 306.0635 187.6638 119.7895 161.2572 280.4941 [9] 243.4055 197.3398 > apply(copymatrix,1,var,na.rm=TRUE) [1] 190.0765 253.4853 136.1727 306.0635 187.6638 119.7895 161.2572 280.4941 [9] 243.4055 197.3398 > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 1 > which.col <- 3 > cat(which.row," ",which.col,"\n") 1 3 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE) [1] 1.989520e-13 1.136868e-13 5.684342e-14 -1.421085e-14 -5.684342e-14 [6] -5.684342e-14 0.000000e+00 -1.421085e-13 2.842171e-14 8.526513e-14 [11] 1.705303e-13 1.989520e-13 9.947598e-14 8.526513e-14 3.410605e-13 [16] 1.421085e-13 -2.842171e-14 0.000000e+00 -2.131628e-13 1.989520e-13 > > > > > > > > > > > ## making sure these things agree > ## > ## first when there is no NA > > > > agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){ + + if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){ + stop("No agreement in Max") + } + + + if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){ + stop("No agreement in Min") + } + + + if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){ + + cat(Sum(buff.matrix,na.rm=TRUE),"\n") + cat(sum(r.matrix,na.rm=TRUE),"\n") + cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n") + + stop("No agreement in Sum") + } + + if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){ + stop("No agreement in mean") + } + + + if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){ + stop("No agreement in Var") + } + + + + if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowMeans") + } + + + if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colMeans") + } + + + if(any(abs(rowSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in rowSums") + } + + + if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colSums") + } + + ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when + ### computing variance + my.Var <- function(x,na.rm=FALSE){ + if (all(is.na(x))){ + return(NA) + } else { + var(x,na.rm=na.rm) + } + + } + + if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + + if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + + if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMedian") + } + + if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colRanges") + } + + + + } > > > > > > > > > > for (rep in 1:20){ + copymatrix <- matrix(rnorm(200,150,15),10,20) + + tmp5[1:10,1:20] <- copymatrix + + + agree.checks(tmp5,copymatrix) + + ## now lets assign some NA values and check agreement + + which.row <- sample(1:10,1,replace=TRUE) + which.col <- sample(1:20,1,replace=TRUE) + + cat(which.row," ",which.col,"\n") + + tmp5[which.row,which.col] <- NA + copymatrix[which.row,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ## make an entire row NA + tmp5[which.row,] <- NA + copymatrix[which.row,] <- NA + + + agree.checks(tmp5,copymatrix) + + ### also make an entire col NA + tmp5[,which.col] <- NA + copymatrix[,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ### now make 1 element non NA with NA in the rest of row and column + + tmp5[which.row,which.col] <- rnorm(1,150,15) + copymatrix[which.row,which.col] <- tmp5[which.row,which.col] + + agree.checks(tmp5,copymatrix) + } 9 15 8 2 4 3 5 10 9 5 7 2 8 12 5 15 3 9 10 20 4 12 1 7 10 2 5 12 9 13 6 13 2 4 4 18 5 14 5 15 There were 50 or more warnings (use warnings() to see the first 50) > > > ### now test 1 by n and n by 1 matrix > > > err.tol <- 1e-12 > > rm(tmp5) > > dataset1 <- rnorm(100) > dataset2 <- rnorm(100) > > tmp <- createBufferedMatrix(1,100) > tmp[1,] <- dataset1 > > tmp2 <- createBufferedMatrix(100,1) > tmp2[,1] <- dataset2 > > > > > > Max(tmp) [1] 3.044354 > Min(tmp) [1] -2.960411 > mean(tmp) [1] 0.1242969 > Sum(tmp) [1] 12.42969 > Var(tmp) [1] 1.313446 > > rowMeans(tmp) [1] 0.1242969 > rowSums(tmp) [1] 12.42969 > rowVars(tmp) [1] 1.313446 > rowSd(tmp) [1] 1.146057 > rowMax(tmp) [1] 3.044354 > rowMin(tmp) [1] -2.960411 > > colMeans(tmp) [1] 0.294610153 1.152418866 -0.779203858 -0.983696815 0.448449889 [6] 0.237043860 0.281099879 1.427223842 2.281858829 -0.126608368 [11] 1.011262430 0.162079643 0.838185182 -0.050531840 0.958285350 [16] -0.254941074 0.313179083 0.253601754 -0.895028299 1.447364101 [21] 2.515039485 1.189414145 -0.183433226 0.726922008 0.317423565 [26] -2.323564000 0.749295302 0.616613972 -1.142938740 0.663223761 [31] 0.764708149 1.820097694 -0.411702798 1.721711658 1.235915797 [36] 0.690655062 -1.972186842 -1.343567360 -2.023833212 0.139185310 [41] -0.801139083 -0.610013107 -1.286435809 -0.685345609 -0.385113129 [46] -0.773298135 1.279622354 -2.960410638 -0.734526790 -1.302057213 [51] -0.069880253 0.557201635 0.898414011 1.066866434 -0.435022098 [56] -0.549454272 0.340898189 0.205850067 -0.704502780 -1.285806741 [61] 0.021870556 0.333962255 -2.077489251 1.332011473 2.676204945 [66] -2.305383181 1.770254143 0.332977857 0.778684956 -0.361429741 [71] -0.781643941 -0.722587515 0.347895221 1.075572702 0.483454881 [76] 3.044354159 0.601473399 0.531475858 0.428310642 -0.480213993 [81] -1.028053973 0.508484492 -1.017131269 0.223238172 -1.615898303 [86] 1.361719868 -1.261399699 2.844359156 -0.459281098 -1.502752918 [91] 0.179060500 -0.059369841 -0.145055269 1.012886208 0.146158258 [96] 1.376542294 -0.002875487 0.625098716 0.401906264 0.280823952 > colSums(tmp) [1] 0.294610153 1.152418866 -0.779203858 -0.983696815 0.448449889 [6] 0.237043860 0.281099879 1.427223842 2.281858829 -0.126608368 [11] 1.011262430 0.162079643 0.838185182 -0.050531840 0.958285350 [16] -0.254941074 0.313179083 0.253601754 -0.895028299 1.447364101 [21] 2.515039485 1.189414145 -0.183433226 0.726922008 0.317423565 [26] -2.323564000 0.749295302 0.616613972 -1.142938740 0.663223761 [31] 0.764708149 1.820097694 -0.411702798 1.721711658 1.235915797 [36] 0.690655062 -1.972186842 -1.343567360 -2.023833212 0.139185310 [41] -0.801139083 -0.610013107 -1.286435809 -0.685345609 -0.385113129 [46] -0.773298135 1.279622354 -2.960410638 -0.734526790 -1.302057213 [51] -0.069880253 0.557201635 0.898414011 1.066866434 -0.435022098 [56] -0.549454272 0.340898189 0.205850067 -0.704502780 -1.285806741 [61] 0.021870556 0.333962255 -2.077489251 1.332011473 2.676204945 [66] -2.305383181 1.770254143 0.332977857 0.778684956 -0.361429741 [71] -0.781643941 -0.722587515 0.347895221 1.075572702 0.483454881 [76] 3.044354159 0.601473399 0.531475858 0.428310642 -0.480213993 [81] -1.028053973 0.508484492 -1.017131269 0.223238172 -1.615898303 [86] 1.361719868 -1.261399699 2.844359156 -0.459281098 -1.502752918 [91] 0.179060500 -0.059369841 -0.145055269 1.012886208 0.146158258 [96] 1.376542294 -0.002875487 0.625098716 0.401906264 0.280823952 > colVars(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colSd(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colMax(tmp) [1] 0.294610153 1.152418866 -0.779203858 -0.983696815 0.448449889 [6] 0.237043860 0.281099879 1.427223842 2.281858829 -0.126608368 [11] 1.011262430 0.162079643 0.838185182 -0.050531840 0.958285350 [16] -0.254941074 0.313179083 0.253601754 -0.895028299 1.447364101 [21] 2.515039485 1.189414145 -0.183433226 0.726922008 0.317423565 [26] -2.323564000 0.749295302 0.616613972 -1.142938740 0.663223761 [31] 0.764708149 1.820097694 -0.411702798 1.721711658 1.235915797 [36] 0.690655062 -1.972186842 -1.343567360 -2.023833212 0.139185310 [41] -0.801139083 -0.610013107 -1.286435809 -0.685345609 -0.385113129 [46] -0.773298135 1.279622354 -2.960410638 -0.734526790 -1.302057213 [51] -0.069880253 0.557201635 0.898414011 1.066866434 -0.435022098 [56] -0.549454272 0.340898189 0.205850067 -0.704502780 -1.285806741 [61] 0.021870556 0.333962255 -2.077489251 1.332011473 2.676204945 [66] -2.305383181 1.770254143 0.332977857 0.778684956 -0.361429741 [71] -0.781643941 -0.722587515 0.347895221 1.075572702 0.483454881 [76] 3.044354159 0.601473399 0.531475858 0.428310642 -0.480213993 [81] -1.028053973 0.508484492 -1.017131269 0.223238172 -1.615898303 [86] 1.361719868 -1.261399699 2.844359156 -0.459281098 -1.502752918 [91] 0.179060500 -0.059369841 -0.145055269 1.012886208 0.146158258 [96] 1.376542294 -0.002875487 0.625098716 0.401906264 0.280823952 > colMin(tmp) [1] 0.294610153 1.152418866 -0.779203858 -0.983696815 0.448449889 [6] 0.237043860 0.281099879 1.427223842 2.281858829 -0.126608368 [11] 1.011262430 0.162079643 0.838185182 -0.050531840 0.958285350 [16] -0.254941074 0.313179083 0.253601754 -0.895028299 1.447364101 [21] 2.515039485 1.189414145 -0.183433226 0.726922008 0.317423565 [26] -2.323564000 0.749295302 0.616613972 -1.142938740 0.663223761 [31] 0.764708149 1.820097694 -0.411702798 1.721711658 1.235915797 [36] 0.690655062 -1.972186842 -1.343567360 -2.023833212 0.139185310 [41] -0.801139083 -0.610013107 -1.286435809 -0.685345609 -0.385113129 [46] -0.773298135 1.279622354 -2.960410638 -0.734526790 -1.302057213 [51] -0.069880253 0.557201635 0.898414011 1.066866434 -0.435022098 [56] -0.549454272 0.340898189 0.205850067 -0.704502780 -1.285806741 [61] 0.021870556 0.333962255 -2.077489251 1.332011473 2.676204945 [66] -2.305383181 1.770254143 0.332977857 0.778684956 -0.361429741 [71] -0.781643941 -0.722587515 0.347895221 1.075572702 0.483454881 [76] 3.044354159 0.601473399 0.531475858 0.428310642 -0.480213993 [81] -1.028053973 0.508484492 -1.017131269 0.223238172 -1.615898303 [86] 1.361719868 -1.261399699 2.844359156 -0.459281098 -1.502752918 [91] 0.179060500 -0.059369841 -0.145055269 1.012886208 0.146158258 [96] 1.376542294 -0.002875487 0.625098716 0.401906264 0.280823952 > colMedians(tmp) [1] 0.294610153 1.152418866 -0.779203858 -0.983696815 0.448449889 [6] 0.237043860 0.281099879 1.427223842 2.281858829 -0.126608368 [11] 1.011262430 0.162079643 0.838185182 -0.050531840 0.958285350 [16] -0.254941074 0.313179083 0.253601754 -0.895028299 1.447364101 [21] 2.515039485 1.189414145 -0.183433226 0.726922008 0.317423565 [26] -2.323564000 0.749295302 0.616613972 -1.142938740 0.663223761 [31] 0.764708149 1.820097694 -0.411702798 1.721711658 1.235915797 [36] 0.690655062 -1.972186842 -1.343567360 -2.023833212 0.139185310 [41] -0.801139083 -0.610013107 -1.286435809 -0.685345609 -0.385113129 [46] -0.773298135 1.279622354 -2.960410638 -0.734526790 -1.302057213 [51] -0.069880253 0.557201635 0.898414011 1.066866434 -0.435022098 [56] -0.549454272 0.340898189 0.205850067 -0.704502780 -1.285806741 [61] 0.021870556 0.333962255 -2.077489251 1.332011473 2.676204945 [66] -2.305383181 1.770254143 0.332977857 0.778684956 -0.361429741 [71] -0.781643941 -0.722587515 0.347895221 1.075572702 0.483454881 [76] 3.044354159 0.601473399 0.531475858 0.428310642 -0.480213993 [81] -1.028053973 0.508484492 -1.017131269 0.223238172 -1.615898303 [86] 1.361719868 -1.261399699 2.844359156 -0.459281098 -1.502752918 [91] 0.179060500 -0.059369841 -0.145055269 1.012886208 0.146158258 [96] 1.376542294 -0.002875487 0.625098716 0.401906264 0.280823952 > colRanges(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.2946102 1.152419 -0.7792039 -0.9836968 0.4484499 0.2370439 0.2810999 [2,] 0.2946102 1.152419 -0.7792039 -0.9836968 0.4484499 0.2370439 0.2810999 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [1,] 1.427224 2.281859 -0.1266084 1.011262 0.1620796 0.8381852 -0.05053184 [2,] 1.427224 2.281859 -0.1266084 1.011262 0.1620796 0.8381852 -0.05053184 [,15] [,16] [,17] [,18] [,19] [,20] [,21] [1,] 0.9582854 -0.2549411 0.3131791 0.2536018 -0.8950283 1.447364 2.515039 [2,] 0.9582854 -0.2549411 0.3131791 0.2536018 -0.8950283 1.447364 2.515039 [,22] [,23] [,24] [,25] [,26] [,27] [,28] [1,] 1.189414 -0.1834332 0.726922 0.3174236 -2.323564 0.7492953 0.616614 [2,] 1.189414 -0.1834332 0.726922 0.3174236 -2.323564 0.7492953 0.616614 [,29] [,30] [,31] [,32] [,33] [,34] [,35] [1,] -1.142939 0.6632238 0.7647081 1.820098 -0.4117028 1.721712 1.235916 [2,] -1.142939 0.6632238 0.7647081 1.820098 -0.4117028 1.721712 1.235916 [,36] [,37] [,38] [,39] [,40] [,41] [,42] [1,] 0.6906551 -1.972187 -1.343567 -2.023833 0.1391853 -0.8011391 -0.6100131 [2,] 0.6906551 -1.972187 -1.343567 -2.023833 0.1391853 -0.8011391 -0.6100131 [,43] [,44] [,45] [,46] [,47] [,48] [,49] [1,] -1.286436 -0.6853456 -0.3851131 -0.7732981 1.279622 -2.960411 -0.7345268 [2,] -1.286436 -0.6853456 -0.3851131 -0.7732981 1.279622 -2.960411 -0.7345268 [,50] [,51] [,52] [,53] [,54] [,55] [,56] [1,] -1.302057 -0.06988025 0.5572016 0.898414 1.066866 -0.4350221 -0.5494543 [2,] -1.302057 -0.06988025 0.5572016 0.898414 1.066866 -0.4350221 -0.5494543 [,57] [,58] [,59] [,60] [,61] [,62] [,63] [1,] 0.3408982 0.2058501 -0.7045028 -1.285807 0.02187056 0.3339623 -2.077489 [2,] 0.3408982 0.2058501 -0.7045028 -1.285807 0.02187056 0.3339623 -2.077489 [,64] [,65] [,66] [,67] [,68] [,69] [,70] [1,] 1.332011 2.676205 -2.305383 1.770254 0.3329779 0.778685 -0.3614297 [2,] 1.332011 2.676205 -2.305383 1.770254 0.3329779 0.778685 -0.3614297 [,71] [,72] [,73] [,74] [,75] [,76] [,77] [1,] -0.7816439 -0.7225875 0.3478952 1.075573 0.4834549 3.044354 0.6014734 [2,] -0.7816439 -0.7225875 0.3478952 1.075573 0.4834549 3.044354 0.6014734 [,78] [,79] [,80] [,81] [,82] [,83] [,84] [1,] 0.5314759 0.4283106 -0.480214 -1.028054 0.5084845 -1.017131 0.2232382 [2,] 0.5314759 0.4283106 -0.480214 -1.028054 0.5084845 -1.017131 0.2232382 [,85] [,86] [,87] [,88] [,89] [,90] [,91] [1,] -1.615898 1.36172 -1.2614 2.844359 -0.4592811 -1.502753 0.1790605 [2,] -1.615898 1.36172 -1.2614 2.844359 -0.4592811 -1.502753 0.1790605 [,92] [,93] [,94] [,95] [,96] [,97] [,98] [1,] -0.05936984 -0.1450553 1.012886 0.1461583 1.376542 -0.002875487 0.6250987 [2,] -0.05936984 -0.1450553 1.012886 0.1461583 1.376542 -0.002875487 0.6250987 [,99] [,100] [1,] 0.4019063 0.280824 [2,] 0.4019063 0.280824 > > > Max(tmp2) [1] 2.660747 > Min(tmp2) [1] -2.284759 > mean(tmp2) [1] -0.02997734 > Sum(tmp2) [1] -2.997734 > Var(tmp2) [1] 1.119619 > > rowMeans(tmp2) [1] 0.063029645 0.475434573 -0.352435128 -0.244169122 1.591275943 [6] 0.824961068 0.270486692 0.526963563 0.004728777 2.048537411 [11] -0.478580630 -0.919274063 0.820665158 1.268467846 -0.541962079 [16] 1.022336974 -0.857814299 -1.239439590 -1.176102411 0.230804737 [21] 1.133062039 -1.341483768 0.277975538 -0.591014369 -2.284758695 [26] -0.033517059 1.447829784 2.071938030 -0.187410629 0.475620897 [31] -1.385957300 1.370019413 0.191440643 0.522976502 0.503055861 [36] -0.207956498 -0.589020361 -0.759630551 -0.461786274 0.855511306 [41] -1.587466338 -0.399064345 1.112842042 0.808168882 1.999832900 [46] 1.241461356 -0.560862600 -0.533225376 2.660746857 -0.921255337 [51] 0.685772861 -0.116011475 -0.180996906 -1.500018642 0.182040275 [56] -0.538141531 0.072271263 0.043971159 -1.116373717 0.499348340 [61] 1.125372206 -1.496093752 0.272310738 2.123012321 0.868331242 [66] -0.080481238 0.096183210 -0.906485174 0.034191581 0.283780858 [71] 0.369496047 0.461610345 -2.150074609 -2.181963339 -2.139108417 [76] -0.537360885 0.568903038 -0.768613147 0.880803980 0.673695723 [81] -1.552764733 -1.361803870 0.878386284 2.115437921 1.477894152 [86] -1.226571028 0.654140492 -0.895812756 -0.424540388 -1.210445636 [91] 0.419058954 -1.730014944 -1.119115576 -0.150453624 -0.492010126 [96] -0.522168057 -1.336942932 0.221617569 -0.219228036 -0.217757728 > rowSums(tmp2) [1] 0.063029645 0.475434573 -0.352435128 -0.244169122 1.591275943 [6] 0.824961068 0.270486692 0.526963563 0.004728777 2.048537411 [11] -0.478580630 -0.919274063 0.820665158 1.268467846 -0.541962079 [16] 1.022336974 -0.857814299 -1.239439590 -1.176102411 0.230804737 [21] 1.133062039 -1.341483768 0.277975538 -0.591014369 -2.284758695 [26] -0.033517059 1.447829784 2.071938030 -0.187410629 0.475620897 [31] -1.385957300 1.370019413 0.191440643 0.522976502 0.503055861 [36] -0.207956498 -0.589020361 -0.759630551 -0.461786274 0.855511306 [41] -1.587466338 -0.399064345 1.112842042 0.808168882 1.999832900 [46] 1.241461356 -0.560862600 -0.533225376 2.660746857 -0.921255337 [51] 0.685772861 -0.116011475 -0.180996906 -1.500018642 0.182040275 [56] -0.538141531 0.072271263 0.043971159 -1.116373717 0.499348340 [61] 1.125372206 -1.496093752 0.272310738 2.123012321 0.868331242 [66] -0.080481238 0.096183210 -0.906485174 0.034191581 0.283780858 [71] 0.369496047 0.461610345 -2.150074609 -2.181963339 -2.139108417 [76] -0.537360885 0.568903038 -0.768613147 0.880803980 0.673695723 [81] -1.552764733 -1.361803870 0.878386284 2.115437921 1.477894152 [86] -1.226571028 0.654140492 -0.895812756 -0.424540388 -1.210445636 [91] 0.419058954 -1.730014944 -1.119115576 -0.150453624 -0.492010126 [96] -0.522168057 -1.336942932 0.221617569 -0.219228036 -0.217757728 > rowVars(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowSd(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowMax(tmp2) [1] 0.063029645 0.475434573 -0.352435128 -0.244169122 1.591275943 [6] 0.824961068 0.270486692 0.526963563 0.004728777 2.048537411 [11] -0.478580630 -0.919274063 0.820665158 1.268467846 -0.541962079 [16] 1.022336974 -0.857814299 -1.239439590 -1.176102411 0.230804737 [21] 1.133062039 -1.341483768 0.277975538 -0.591014369 -2.284758695 [26] -0.033517059 1.447829784 2.071938030 -0.187410629 0.475620897 [31] -1.385957300 1.370019413 0.191440643 0.522976502 0.503055861 [36] -0.207956498 -0.589020361 -0.759630551 -0.461786274 0.855511306 [41] -1.587466338 -0.399064345 1.112842042 0.808168882 1.999832900 [46] 1.241461356 -0.560862600 -0.533225376 2.660746857 -0.921255337 [51] 0.685772861 -0.116011475 -0.180996906 -1.500018642 0.182040275 [56] -0.538141531 0.072271263 0.043971159 -1.116373717 0.499348340 [61] 1.125372206 -1.496093752 0.272310738 2.123012321 0.868331242 [66] -0.080481238 0.096183210 -0.906485174 0.034191581 0.283780858 [71] 0.369496047 0.461610345 -2.150074609 -2.181963339 -2.139108417 [76] -0.537360885 0.568903038 -0.768613147 0.880803980 0.673695723 [81] -1.552764733 -1.361803870 0.878386284 2.115437921 1.477894152 [86] -1.226571028 0.654140492 -0.895812756 -0.424540388 -1.210445636 [91] 0.419058954 -1.730014944 -1.119115576 -0.150453624 -0.492010126 [96] -0.522168057 -1.336942932 0.221617569 -0.219228036 -0.217757728 > rowMin(tmp2) [1] 0.063029645 0.475434573 -0.352435128 -0.244169122 1.591275943 [6] 0.824961068 0.270486692 0.526963563 0.004728777 2.048537411 [11] -0.478580630 -0.919274063 0.820665158 1.268467846 -0.541962079 [16] 1.022336974 -0.857814299 -1.239439590 -1.176102411 0.230804737 [21] 1.133062039 -1.341483768 0.277975538 -0.591014369 -2.284758695 [26] -0.033517059 1.447829784 2.071938030 -0.187410629 0.475620897 [31] -1.385957300 1.370019413 0.191440643 0.522976502 0.503055861 [36] -0.207956498 -0.589020361 -0.759630551 -0.461786274 0.855511306 [41] -1.587466338 -0.399064345 1.112842042 0.808168882 1.999832900 [46] 1.241461356 -0.560862600 -0.533225376 2.660746857 -0.921255337 [51] 0.685772861 -0.116011475 -0.180996906 -1.500018642 0.182040275 [56] -0.538141531 0.072271263 0.043971159 -1.116373717 0.499348340 [61] 1.125372206 -1.496093752 0.272310738 2.123012321 0.868331242 [66] -0.080481238 0.096183210 -0.906485174 0.034191581 0.283780858 [71] 0.369496047 0.461610345 -2.150074609 -2.181963339 -2.139108417 [76] -0.537360885 0.568903038 -0.768613147 0.880803980 0.673695723 [81] -1.552764733 -1.361803870 0.878386284 2.115437921 1.477894152 [86] -1.226571028 0.654140492 -0.895812756 -0.424540388 -1.210445636 [91] 0.419058954 -1.730014944 -1.119115576 -0.150453624 -0.492010126 [96] -0.522168057 -1.336942932 0.221617569 -0.219228036 -0.217757728 > > colMeans(tmp2) [1] -0.02997734 > colSums(tmp2) [1] -2.997734 > colVars(tmp2) [1] 1.119619 > colSd(tmp2) [1] 1.05812 > colMax(tmp2) [1] 2.660747 > colMin(tmp2) [1] -2.284759 > colMedians(tmp2) [1] -0.01439414 > colRanges(tmp2) [,1] [1,] -2.284759 [2,] 2.660747 > > dataset1 <- matrix(dataset1,1,100) > > agree.checks(tmp,dataset1) > > dataset2 <- matrix(dataset2,100,1) > agree.checks(tmp2,dataset2) > > > tmp <- createBufferedMatrix(10,10) > > tmp[1:10,1:10] <- rnorm(100) > colApply(tmp,sum) [1] 3.4525821 1.6616017 1.1066723 -0.3076806 -2.0072552 -1.4637005 [7] -0.6569276 -4.0548118 2.1117671 1.1636300 > colApply(tmp,quantile)[,1] [,1] [1,] -1.0782005 [2,] -0.2433978 [3,] 0.5159004 [4,] 1.1234885 [5,] 1.2350012 > > rowApply(tmp,sum) [1] -0.06404391 -1.50837753 2.20496378 -4.61344627 -2.16183028 3.52914171 [7] -2.79006546 1.19000992 -1.44597538 6.66550073 > rowApply(tmp,rank)[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 8 10 5 6 10 8 4 7 2 6 [2,] 10 2 6 3 6 6 9 9 1 4 [3,] 7 9 3 10 2 2 7 4 10 5 [4,] 5 5 1 9 9 4 10 2 6 2 [5,] 6 3 4 2 3 10 8 1 9 7 [6,] 3 4 9 8 7 7 2 3 5 3 [7,] 9 8 2 4 4 1 1 6 4 10 [8,] 1 6 10 1 5 3 3 8 3 1 [9,] 4 7 7 5 1 9 6 5 7 9 [10,] 2 1 8 7 8 5 5 10 8 8 > > tmp <- createBufferedMatrix(5,20) > > tmp[1:5,1:20] <- rnorm(100) > colApply(tmp,sum) [1] 0.7953211 6.2749931 0.2988696 1.0506680 -0.1023363 -3.0458136 [7] -1.4117774 -1.3385112 -0.2841389 -0.3644165 -3.0390202 -0.9680779 [13] 1.5906692 -2.4572609 0.8872866 -2.1574579 1.9862230 -4.1751088 [19] -1.0917568 0.2082732 > colApply(tmp,quantile)[,1] [,1] [1,] -0.92768224 [2,] -0.89823126 [3,] -0.04196928 [4,] 0.62511638 [5,] 2.03808746 > > rowApply(tmp,sum) [1] -4.5785776 0.9241884 -1.1205131 0.7478370 -3.3163073 > rowApply(tmp,rank)[1:5,] [,1] [,2] [,3] [,4] [,5] [1,] 12 4 16 20 5 [2,] 19 18 17 12 20 [3,] 18 14 8 14 3 [4,] 1 16 9 18 17 [5,] 9 12 1 15 18 > > > as.matrix(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [1,] -0.04196928 1.5709342 0.5458840 -1.6395714 -0.3119997 0.08579223 [2,] -0.89823126 1.0830716 0.7315070 0.8532191 0.2841854 -2.44959119 [3,] 0.62511638 0.8562727 -0.3424784 -0.2365615 -1.8962016 0.61365030 [4,] 2.03808746 0.4571310 0.5955976 1.2765777 0.8085430 -0.80030529 [5,] -0.92768224 2.3075836 -1.2316407 0.7970041 1.0131365 -0.49535966 [,7] [,8] [,9] [,10] [,11] [,12] [1,] -0.1788837 -1.1279634 -1.5463307 -0.5829691 -1.3850997 0.4697372 [2,] -0.4130463 0.8932610 0.6576960 1.1440849 0.7382039 -0.1409193 [3,] -1.0702385 -1.0492092 1.0135442 0.1184713 -1.1939252 0.2946214 [4,] 1.6922647 -0.3182613 -1.1840681 1.1439205 -1.6930619 -1.1159652 [5,] -1.4418737 0.2636617 0.7750196 -2.1879240 0.4948628 -0.4755521 [,13] [,14] [,15] [,16] [,17] [,18] [1,] -0.9027816 -1.2477003 0.5081661 -0.61252357 2.019626 -0.2844378 [2,] 2.3345375 -0.1320554 0.1215689 0.17121170 -1.190928 -1.6267955 [3,] 1.8063469 0.3531860 -0.7849945 -0.03622771 -1.103061 -0.4557339 [4,] -1.1447541 -1.2149593 0.5341328 -1.07759258 1.056011 -0.6120674 [5,] -0.5026794 -0.2157320 0.5084133 -0.60232570 1.204574 -1.1960743 [,19] [,20] [1,] 0.04832788 0.03518444 [2,] -0.72248652 -0.51430564 [3,] 0.25154121 1.11536751 [4,] 0.18558441 0.12102205 [5,] -0.85472377 -0.54899513 > > > is.BufferedMatrix(tmp) [1] TRUE > > as.BufferedMatrix(as.matrix(tmp)) BufferedMatrix object Matrix size: 5 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 800 bytes. > > > > subBufferedMatrix(tmp,1:5,1:5) BufferedMatrix object Matrix size: 5 5 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 633 bytes. Disk usage : 200 bytes. > subBufferedMatrix(tmp,,5:8) BufferedMatrix object Matrix size: 5 4 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 544 bytes. Disk usage : 160 bytes. > subBufferedMatrix(tmp,1:3,) BufferedMatrix object Matrix size: 3 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 1.9 Kilobytes. Disk usage : 480 bytes. > > > rm(tmp) > > > ### > ### Testing colnames and rownames > ### > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 row1 -0.02150094 -0.2904133 0.7475422 -0.2713794 3.11179 -0.5228039 -0.2192261 col8 col9 col10 col11 col12 col13 col14 row1 0.8441244 1.774674 0.4983188 0.8322897 0.9474619 0.04073569 -1.44431 col15 col16 col17 col18 col19 col20 row1 -1.324016 -0.06574631 -1.702086 -0.04168893 -1.745212 -1.706266 > tmp[,"col10"] col10 row1 0.4983188 row2 -1.9183628 row3 0.2089247 row4 0.1735211 row5 0.3438326 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 row1 -0.02150094 -0.2904133 0.7475422 -0.2713794 3.1117899 -0.5228039 row5 -0.59281477 -0.6433799 0.8117210 0.3732589 -0.1741005 0.7482524 col7 col8 col9 col10 col11 col12 col13 row1 -0.2192261 0.8441244 1.7746741 0.4983188 0.8322897 0.9474619 0.04073569 row5 2.0030677 0.7533417 0.4113992 0.3438326 0.3003741 1.7246873 0.92256077 col14 col15 col16 col17 col18 col19 row1 -1.4443098 -1.324016 -0.06574631 -1.7020860 -0.04168893 -1.7452122 row5 -0.9949281 -1.931927 0.60570845 0.3622709 0.76867691 0.3161864 col20 row1 -1.706266 row5 -1.121467 > tmp[,c("col6","col20")] col6 col20 row1 -0.5228039 -1.7062656 row2 -0.0398631 1.6349771 row3 0.8503051 0.3619388 row4 0.7699596 1.8340318 row5 0.7482524 -1.1214673 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 -0.5228039 -1.706266 row5 0.7482524 -1.121467 > > > > > tmp["row1",] <- rnorm(20,mean=10) > tmp[,"col10"] <- rnorm(5,mean=30) > tmp[c("row1","row5"),] <- rnorm(40,mean=50) > tmp[,c("col6","col20")] <- rnorm(10,mean=75) > tmp[c("row1","row5"),c("col6","col20")] <- rnorm(4,mean=105) > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 col8 row1 49.16109 49.98969 48.83973 49.99661 50.86108 104.5659 49.0565 49.6943 col9 col10 col11 col12 col13 col14 col15 col16 row1 50.12515 48.60882 50.51753 47.73347 49.87874 49.37759 52.21617 49.50765 col17 col18 col19 col20 row1 48.44309 51.36696 49.55187 105.2485 > tmp[,"col10"] col10 row1 48.60882 row2 31.21845 row3 30.72374 row4 29.78033 row5 51.89615 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 col8 row1 49.16109 49.98969 48.83973 49.99661 50.86108 104.5659 49.05650 49.69430 row5 48.85606 51.08934 49.14238 49.08632 50.21990 106.0125 50.97139 50.89437 col9 col10 col11 col12 col13 col14 col15 col16 row1 50.12515 48.60882 50.51753 47.73347 49.87874 49.37759 52.21617 49.50765 row5 50.70204 51.89615 50.00187 49.66782 50.62231 49.52144 47.46894 50.28195 col17 col18 col19 col20 row1 48.44309 51.36696 49.55187 105.2485 row5 49.52443 49.48525 51.79294 106.4932 > tmp[,c("col6","col20")] col6 col20 row1 104.56587 105.24851 row2 74.36813 74.65538 row3 76.58179 75.18124 row4 74.95861 74.17239 row5 106.01252 106.49324 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 104.5659 105.2485 row5 106.0125 106.4932 > > > subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2] col6 col20 row1 104.5659 105.2485 row5 106.0125 106.4932 > > > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > > tmp[,"col13"] col13 [1,] -0.6617790 [2,] -0.3498817 [3,] 2.0810460 [4,] 0.1423811 [5,] -0.3008159 > tmp[,c("col17","col7")] col17 col7 [1,] 0.1352289 1.0746089 [2,] 0.1984564 0.8461539 [3,] 1.3502728 -0.8785379 [4,] -1.4981735 1.5519643 [5,] -0.1316783 -0.0552906 > > subBufferedMatrix(tmp,,c("col6","col20"))[,1:2] col6 col20 [1,] 0.4762895 -1.08051135 [2,] 0.2686948 -0.98265233 [3,] -0.7037199 1.49373024 [4,] 0.1939670 0.06097526 [5,] 0.9178367 -1.82011374 > subBufferedMatrix(tmp,1,c("col6"))[,1] col1 [1,] 0.4762895 > subBufferedMatrix(tmp,1:2,c("col6"))[,1] col6 [1,] 0.4762895 [2,] 0.2686948 > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > > > > subBufferedMatrix(tmp,c("row3","row1"),)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row3 -1.056114 -0.2193934 0.5533883 -0.2131966 -1.217122 1.748665 -0.5598889 row1 2.332961 -0.8005179 0.2082957 1.0996432 0.662279 -1.078738 -0.5287515 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row3 -0.8970268 1.3009879 0.1917797 0.3316624 -0.9025574 1.0654458 -0.03413915 row1 -0.2409498 -0.5771704 2.1204946 1.2632354 -0.7249611 0.5653822 1.54235825 [,15] [,16] [,17] [,18] [,19] [,20] row3 1.4105391 -1.026773 -1.5428087 -1.304378 1.7253249 -0.4367486 row1 -0.7358892 -1.285978 0.6795651 -1.235927 0.9640771 1.3714412 > subBufferedMatrix(tmp,c("row2"),1:10)[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row2 0.5421426 -1.791016 1.215997 -0.9445439 1.666804 -0.5552223 -0.4609636 [,8] [,9] [,10] row2 0.2082382 -0.1170384 -0.3137818 > subBufferedMatrix(tmp,c("row5"),1:20)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row5 1.261411 -1.8772 -0.73769 0.6996326 -1.241674 1.789783 -0.3847476 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row5 0.7549676 -0.3565207 0.02084376 0.9882765 2.864043 -0.5647548 -0.9222932 [,15] [,16] [,17] [,18] [,19] [,20] row5 1.862593 0.102379 -1.662031 0.5582716 -0.6412792 0.05681639 > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > colnames(tmp) <- NULL > rownames(tmp) <- NULL > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > dimnames(tmp) <- NULL > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > dimnames(tmp) <- NULL > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] NULL > > dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE))) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > > ### > ### Testing logical indexing > ### > ### > > tmp <- createBufferedMatrix(230,15) > tmp[1:230,1:15] <- rnorm(230*15) > x <-tmp[1:230,1:15] > > for (rep in 1:10){ + which.cols <- sample(c(TRUE,FALSE),15,replace=T) + which.rows <- sample(c(TRUE,FALSE),230,replace=T) + + if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){ + stop("No agreement when logical indexing\n") + } + + if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] == x[,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix cols\n") + } + if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] == x[which.rows,])){ + stop("No agreement when logical indexing in subBufferedMatrix rows\n") + } + + + if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]== x[which.rows,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n") + } + } > > > ## > ## Test the ReadOnlyMode > ## > > ReadOnlyMode(tmp) <pointer: 0x034bacc8> > is.ReadOnlyMode(tmp) [1] TRUE > > filenames(tmp) [1] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec23b3c1c" [2] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec5e225c24" [3] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16eca3e1b6a" [4] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec31c8386e" [5] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec632b1e29" [6] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec2bef7b63" [7] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ecfb461e2" [8] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec282a63ec" [9] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec3d9e4aee" [10] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec65131846" [11] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec58034989" [12] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec1b3663b3" [13] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec75552528" [14] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec7b2a7c70" [15] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM16ec66a0120d" > > > ### testing coercion functions > ### > > tmp <- as(tmp,"matrix") > tmp <- as(tmp,"BufferedMatrix") > > > > ### testing whether can move storage from one location to another > > MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE) <pointer: 0x01f76430> > MoveStorageDirectory(tmp,getwd(),full.path=TRUE) <pointer: 0x01f76430> Warning message: In dir.create(new.directory) : 'C:\Users\biocbuild\bbs-3.9-bioc\meat\BufferedMatrix.Rcheck\tests_i386' already exists > > > RowMode(tmp) <pointer: 0x01f76430> > rowMedians(tmp) [1] -0.230998972 -0.118093343 -0.199021656 -0.037927800 0.309625484 [6] -0.112740619 0.346256074 0.237077185 -0.138232322 0.519952425 [11] -0.304816698 -0.548178286 0.508777150 -0.796340676 -0.841709651 [16] -0.340249646 -0.015593775 0.297000608 0.048016048 0.570855957 [21] 0.015275455 -0.058796168 0.082246840 0.238425756 0.083849354 [26] 0.081005379 0.031711297 0.031072552 0.196191047 0.066792054 [31] -0.265871828 -0.059130278 -0.021509755 0.168558718 -0.376099183 [36] -0.145541769 0.035544486 0.281351102 0.888631092 -0.138238667 [41] 0.041842302 0.164769610 0.335063590 0.126596880 -0.388279168 [46] 0.053295902 -0.207198146 -0.169773871 -0.165786932 0.306918911 [51] 0.200161481 -0.035083180 0.040495478 -0.378761346 0.480183958 [56] -0.016226685 0.068557083 0.122616199 -0.296214051 0.474608708 [61] 0.154253056 0.356299747 0.600186551 0.101678441 0.199709322 [66] 0.245678047 -0.150984843 0.435087413 -0.346943118 0.005506282 [71] -0.285632382 0.114066335 0.032563598 -0.371185920 0.464662943 [76] -0.183057440 0.220670750 0.152030116 0.267086226 -0.198254615 [81] -0.572839723 0.066858952 -0.143555496 0.094657658 0.621061518 [86] -0.120271985 0.282354661 -0.004665900 0.287078566 0.424450692 [91] 0.097181559 0.519121285 -0.012170080 -0.089340141 -0.297352963 [96] 0.213808584 -0.063945656 0.011010737 0.430216486 0.370424842 [101] 0.121732288 -0.148641034 0.079630010 -0.023786755 -0.020697280 [106] 0.148585252 -0.127411381 0.135047612 0.074570193 -0.926303006 [111] 0.106513519 0.237221036 -0.136608045 -0.077462486 0.527575630 [116] 0.194626249 -0.179480299 0.396530664 -0.124261345 0.125403309 [121] 0.385994900 -0.393437424 -0.311708354 0.126204861 0.457247379 [126] -0.041494631 0.346631896 -0.139618290 -0.171104700 0.023788257 [131] 0.164000835 0.270344522 -0.098767907 -0.074698060 -0.261057565 [136] -0.763586367 -0.530339204 -0.340650242 -0.103104533 -0.332544160 [141] -0.017203754 0.248434510 -0.288861890 0.415772507 -0.034142743 [146] 0.147939533 0.151282618 0.460916418 -0.387499483 0.526769970 [151] 0.578090264 -0.364838404 -0.337468174 0.321138893 0.385381422 [156] 0.263834810 0.035865265 -0.194011871 0.280375423 -0.186525623 [161] -0.040133459 0.094806652 -0.555100092 -0.364366695 -0.087980530 [166] -0.014529790 0.325783265 -0.479459056 -0.237642566 -0.432692127 [171] -0.176702965 0.025446969 -0.108876546 -0.169116532 0.109013498 [176] 0.175692286 -0.288560152 0.207092496 -0.386694840 -0.047349383 [181] -0.604133583 0.120917933 -0.248566146 -0.173188926 0.001669923 [186] -0.382005250 0.443297437 0.143285125 0.355768896 -0.640140624 [191] -0.201234362 0.188807200 -0.445787002 0.151042300 -0.098973801 [196] -0.035700579 0.063029619 -0.287100144 0.596079109 0.384751250 [201] -0.045012013 -0.021703932 -0.214722953 0.401297559 0.026255078 [206] 0.418065044 0.179085497 0.576195384 0.002823242 0.110871983 [211] 0.552871118 0.140403836 -0.326679334 -0.167974271 -0.049689441 [216] 0.314225373 -0.494061734 0.166688622 0.352181720 0.220433113 [221] 0.047831172 -0.417430472 0.152279545 -0.223098198 -0.006537916 [226] 0.439551156 -0.112722465 0.440437934 -0.121919060 0.418742551 > > proc.time() user system elapsed 3.50 7.45 11.40 |
BufferedMatrix.Rcheck/tests_x64/objectTesting.Rout R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > > ### this is used to control how many repetitions in something below > ### higher values result in more checks. > nreps <-100 ##20000 > > > ## test creation and some simple assignments and subsetting operations > > ## first on single elements > tmp <- createBufferedMatrix(1000,10) > > tmp[10,5] [1] 0 > tmp[10,5] <- 10 > tmp[10,5] [1] 10 > tmp[10,5] <- 12.445 > tmp[10,5] [1] 12.445 > > > > ## now testing accessing multiple elements > tmp2 <- createBufferedMatrix(10,20) > > > tmp2[3,1] <- 51.34 > tmp2[9,2] <- 9.87654 > tmp2[,1:2] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[,-(3:20)] [,1] [,2] [1,] 0.00 0.00000 [2,] 0.00 0.00000 [3,] 51.34 0.00000 [4,] 0.00 0.00000 [5,] 0.00 0.00000 [6,] 0.00 0.00000 [7,] 0.00 0.00000 [8,] 0.00 0.00000 [9,] 0.00 9.87654 [10,] 0.00 0.00000 > tmp2[3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 51.34 0 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 > tmp2[-3,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [1,] 0 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 0 > tmp2[2,1:3] [,1] [,2] [,3] [1,] 0 0 0 > tmp2[3:9,1:3] [,1] [,2] [,3] [1,] 51.34 0.00000 0 [2,] 0.00 0.00000 0 [3,] 0.00 0.00000 0 [4,] 0.00 0.00000 0 [5,] 0.00 0.00000 0 [6,] 0.00 0.00000 0 [7,] 0.00 9.87654 0 > tmp2[-4,-4] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [2,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [3,] 51.34 0.00000 0 0 0 0 0 0 0 0 0 0 0 [4,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [5,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [6,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [7,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [8,] 0.00 9.87654 0 0 0 0 0 0 0 0 0 0 0 [9,] 0.00 0.00000 0 0 0 0 0 0 0 0 0 0 0 [,14] [,15] [,16] [,17] [,18] [,19] [1,] 0 0 0 0 0 0 [2,] 0 0 0 0 0 0 [3,] 0 0 0 0 0 0 [4,] 0 0 0 0 0 0 [5,] 0 0 0 0 0 0 [6,] 0 0 0 0 0 0 [7,] 0 0 0 0 0 0 [8,] 0 0 0 0 0 0 [9,] 0 0 0 0 0 0 > > ## now testing accessing/assigning multiple elements > tmp3 <- createBufferedMatrix(10,10) > > for (i in 1:10){ + for (j in 1:10){ + tmp3[i,j] <- (j-1)*10 + i + } + } > > tmp3[2:4,2:4] [,1] [,2] [,3] [1,] 12 22 32 [2,] 13 23 33 [3,] 14 24 34 > tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] 11 21 31 11 21 31 91 1 11 1 11 21 31 [2,] 12 22 32 12 22 32 92 2 12 2 12 22 32 [3,] 13 23 33 13 23 33 93 3 13 3 13 23 33 [4,] 14 24 34 14 24 34 94 4 14 4 14 24 34 [5,] 15 25 35 15 25 35 95 5 15 5 15 25 35 [6,] 16 26 36 16 26 36 96 6 16 6 16 26 36 [7,] 17 27 37 17 27 37 97 7 17 7 17 27 37 [8,] 18 28 38 18 28 38 98 8 18 8 18 28 38 [9,] 19 29 39 19 29 39 99 9 19 9 19 29 39 [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [1,] 41 51 61 71 81 91 91 81 71 61 51 41 [2,] 42 52 62 72 82 92 92 82 72 62 52 42 [3,] 43 53 63 73 83 93 93 83 73 63 53 43 [4,] 44 54 64 74 84 94 94 84 74 64 54 44 [5,] 45 55 65 75 85 95 95 85 75 65 55 45 [6,] 46 56 66 76 86 96 96 86 76 66 56 46 [7,] 47 57 67 77 87 97 97 87 77 67 57 47 [8,] 48 58 68 78 88 98 98 88 78 68 58 48 [9,] 49 59 69 79 89 99 99 89 79 69 59 49 [,26] [,27] [,28] [,29] [1,] 31 21 11 1 [2,] 32 22 12 2 [3,] 33 23 13 3 [4,] 34 24 14 4 [5,] 35 25 15 5 [6,] 36 26 16 6 [7,] 37 27 17 7 [8,] 38 28 18 8 [9,] 39 29 19 9 > tmp3[-c(1:5),-c(6:10)] [,1] [,2] [,3] [,4] [,5] [1,] 6 16 26 36 46 [2,] 7 17 27 37 47 [3,] 8 18 28 38 48 [4,] 9 19 29 39 49 [5,] 10 20 30 40 50 > > ## assignment of whole columns > tmp3[,1] <- c(1:10*100.0) > tmp3[,1:2] <- tmp3[,1:2]*100 > tmp3[,1:2] <- tmp3[,2:1] > tmp3[,1:2] [,1] [,2] [1,] 1100 1e+04 [2,] 1200 2e+04 [3,] 1300 3e+04 [4,] 1400 4e+04 [5,] 1500 5e+04 [6,] 1600 6e+04 [7,] 1700 7e+04 [8,] 1800 8e+04 [9,] 1900 9e+04 [10,] 2000 1e+05 > > > tmp3[,-1] <- tmp3[,1:9] > tmp3[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1100 1100 1e+04 21 31 41 51 61 71 81 [2,] 1200 1200 2e+04 22 32 42 52 62 72 82 [3,] 1300 1300 3e+04 23 33 43 53 63 73 83 [4,] 1400 1400 4e+04 24 34 44 54 64 74 84 [5,] 1500 1500 5e+04 25 35 45 55 65 75 85 [6,] 1600 1600 6e+04 26 36 46 56 66 76 86 [7,] 1700 1700 7e+04 27 37 47 57 67 77 87 [8,] 1800 1800 8e+04 28 38 48 58 68 78 88 [9,] 1900 1900 9e+04 29 39 49 59 69 79 89 [10,] 2000 2000 1e+05 30 40 50 60 70 80 90 > > tmp3[,1:2] <- rep(1,10) > tmp3[,1:2] <- rep(1,20) > tmp3[,1:2] <- matrix(c(1:5),1,5) > > tmp3[,-c(1:8)] <- matrix(c(1:5),1,5) > > tmp3[1,] <- 1:10 > tmp3[1,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 > tmp3[-1,] <- c(1,2) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 2 1 2 1 2 1 2 1 2 1 [10,] 1 2 1 2 1 2 1 2 1 2 > tmp3[-c(1:8),] <- matrix(c(1:5),1,5) > tmp3[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 1 2 3 4 5 6 7 8 9 10 [2,] 1 2 1 2 1 2 1 2 1 2 [3,] 2 1 2 1 2 1 2 1 2 1 [4,] 1 2 1 2 1 2 1 2 1 2 [5,] 2 1 2 1 2 1 2 1 2 1 [6,] 1 2 1 2 1 2 1 2 1 2 [7,] 2 1 2 1 2 1 2 1 2 1 [8,] 1 2 1 2 1 2 1 2 1 2 [9,] 1 3 5 2 4 1 3 5 2 4 [10,] 2 4 1 3 5 2 4 1 3 5 > > > tmp3[1:2,1:2] <- 5555.04 > tmp3[-(1:2),1:2] <- 1234.56789 > > > > ## testing accessors for the directory and prefix > directory(tmp3) [1] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64" > prefix(tmp3) [1] "BM" > > ## testing if we can remove these objects > rm(tmp, tmp2, tmp3) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 406205 21.7 843634 45.1 633902 33.9 Vcells 699015 5.4 8388608 64.0 1644631 12.6 > > > > > ## > ## checking reads > ## > > tmp2 <- createBufferedMatrix(10,20) > > test.sample <- rnorm(10*20) > > tmp2[1:10,1:20] <- test.sample > > test.matrix <- matrix(test.sample,10,20) > > ## testing reads > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Tue Apr 09 01:30:20 2019" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Tue Apr 09 01:30:21 2019" > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > > > RowMode(tmp2) <pointer: 0x0000000005b47120> > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + which.col <- sample(1:20,1) + if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[,which.col] == test.matrix[,which.col])){ + cat("incorrect agreement") + break; + } + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + if (!all(tmp2[which.row,] == test.matrix[which.row,])){ + cat("incorrect agreement") + break; + } + } > > > date() [1] "Tue Apr 09 01:30:23 2019" > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){ + cat("incorrect agreement") + break; + } + } > date() [1] "Tue Apr 09 01:30:24 2019" > > ColMode(tmp2) <pointer: 0x0000000005b47120> > > > > ### Now testing assignments > > for (rep in 1:nreps){ + which.row <- sample(1:10,1) + + new.data <- rnorm(20) + tmp2[which.row,] <- new.data + test.matrix[which.row,] <- new.data + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,1) + new.data <- rnorm(10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > > > for (rep in 1:nreps){ + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[,which.col] <- new.data + test.matrix[,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.col <- which.col + } > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + new.data <- matrix(rnorm(50),5,10) + tmp2[which.row,] <- new.data + test.matrix[which.row,]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + } > > > > > > for (rep in 1:nreps){ + which.row <- sample(1:10,5,replace=TRUE) + which.col <- sample(1:20,5,replace=TRUE) + new.data <- matrix(rnorm(25),5,5) + tmp2[which.row,which.col] <- new.data + test.matrix[which.row,which.col]<- new.data + + if (rep > 1){ + if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){ + cat("incorrect agreement") + break; + } + } + prev.row <- which.row + prev.col <- which.col + } > > > > > ### > ### > ### testing some more functions > ### > > > > ## duplication function > tmp5 <- duplicate(tmp2) > > # making sure really did copy everything. > tmp5[1,1] <- tmp5[1,1] +100.00 > > if (tmp5[1,1] == tmp2[1,1]){ + stop("Problem with duplication") + } > > > > > ### testing elementwise applying of functions > > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 100.6162111 1.8313694 -0.2469245 1.7847934 [2,] 1.7176742 0.9582072 0.4819515 0.9647294 [3,] 0.4107792 0.6964609 -0.2003150 2.2381164 [4,] -1.2095639 1.4515773 1.4999891 -0.9885560 > ewApply(tmp5,abs) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 100.6162111 1.8313694 0.2469245 1.7847934 [2,] 1.7176742 0.9582072 0.4819515 0.9647294 [3,] 0.4107792 0.6964609 0.2003150 2.2381164 [4,] 1.2095639 1.4515773 1.4999891 0.9885560 > ewApply(tmp5,sqrt) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 10.0307632 1.3532810 0.4969150 1.3359616 [2,] 1.3106007 0.9788806 0.6942273 0.9822064 [3,] 0.6409206 0.8345423 0.4475656 1.4960336 [4,] 1.0998018 1.2048142 1.2247404 0.9942615 > > my.function <- function(x,power){ + (x+5)^power + } > > ewApply(tmp5,my.function,power=2) BufferedMatrix object Matrix size: 10 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 1.6 Kilobytes. > tmp5[1:4,1:4] [,1] [,2] [,3] [,4] [1,] 225.92384 40.36418 30.21607 40.14441 [2,] 39.82368 35.74701 32.42422 35.78679 [3,] 31.81999 34.04188 29.67597 42.19845 [4,] 37.20758 38.49972 38.74739 35.93117 > > > > ## testing functions that elementwise transform the matrix > sqrt(tmp5) <pointer: 0x0000000005f6c9c0> > exp(tmp5) <pointer: 0x0000000005f6c9c0> > log(tmp5,2) <pointer: 0x0000000005f6c9c0> > pow(tmp5,2) > > > > > > ## testing functions that apply to entire matrix > Max(tmp5) [1] 470.2309 > Min(tmp5) [1] 53.11546 > mean(tmp5) [1] 72.51425 > Sum(tmp5) [1] 14502.85 > Var(tmp5) [1] 871.9699 > > > ## testing functions applied to rows or columns > > rowMeans(tmp5) [1] 93.28009 71.73369 67.72243 73.03833 72.79818 67.18775 68.70683 71.47878 [9] 70.47707 68.71932 > rowSums(tmp5) [1] 1865.602 1434.674 1354.449 1460.767 1455.964 1343.755 1374.137 1429.576 [9] 1409.541 1374.386 > rowVars(tmp5) [1] 7928.56423 109.67176 59.39206 96.29534 55.12120 73.28605 [7] 67.33787 71.42415 62.81667 63.94629 > rowSd(tmp5) [1] 89.042486 10.472428 7.706624 9.813019 7.424365 8.560727 8.205965 [8] 8.451281 7.925697 7.996643 > rowMax(tmp5) [1] 470.23088 89.68967 87.83055 89.00798 85.44488 82.99385 82.42931 [8] 86.32084 88.08714 82.44129 > rowMin(tmp5) [1] 62.89080 53.83215 57.81162 58.12919 56.50081 53.39587 53.11546 55.35819 [9] 60.42605 57.48307 > > colMeans(tmp5) [1] 115.24086 73.05145 69.63079 76.08830 67.63022 70.83582 67.86731 [8] 67.02839 71.36074 72.82036 70.36917 67.38892 70.48635 69.29140 [15] 72.14838 68.50362 64.98307 69.79349 69.91175 75.85453 > colSums(tmp5) [1] 1152.4086 730.5145 696.3079 760.8830 676.3022 708.3582 678.6731 [8] 670.2839 713.6074 728.2036 703.6917 673.8892 704.8635 692.9140 [15] 721.4838 685.0362 649.8307 697.9349 699.1175 758.5453 > colVars(tmp5) [1] 15587.41906 44.28770 62.20434 72.33613 69.35490 130.87732 [7] 64.04584 76.59202 86.77004 114.91417 67.95310 67.04968 [13] 51.02378 19.76199 135.32989 74.92313 69.85546 54.42492 [19] 30.29984 100.39644 > colSd(tmp5) [1] 124.849586 6.654900 7.886973 8.505065 8.327959 11.440162 [7] 8.002864 8.751687 9.315044 10.719803 8.243367 8.188387 [13] 7.143093 4.445446 11.633137 8.655815 8.357958 7.377325 [19] 5.504529 10.019802 > colMax(tmp5) [1] 470.23088 84.01275 80.64762 87.83055 80.96574 88.08714 79.92157 [8] 82.01018 86.32084 89.68967 82.37926 82.99385 78.75654 75.22675 [15] 89.00798 82.85273 83.96017 82.93490 79.35588 91.01513 > colMin(tmp5) [1] 66.22913 63.57424 56.45140 63.60317 53.83215 57.53114 57.48307 55.32593 [9] 53.11546 55.35819 59.19297 57.81162 60.22911 60.42605 54.14987 57.18110 [17] 53.39587 58.39146 61.00547 59.24347 > > > ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default) > > > which.row <- sample(1:10,1,replace=TRUE) > which.col <- sample(1:20,1,replace=TRUE) > > tmp5[which.row,which.col] <- NA > > Max(tmp5) [1] NA > Min(tmp5) [1] NA > mean(tmp5) [1] NA > Sum(tmp5) [1] NA > Var(tmp5) [1] NA > > rowMeans(tmp5) [1] 93.28009 71.73369 67.72243 73.03833 72.79818 67.18775 68.70683 NA [9] 70.47707 68.71932 > rowSums(tmp5) [1] 1865.602 1434.674 1354.449 1460.767 1455.964 1343.755 1374.137 NA [9] 1409.541 1374.386 > rowVars(tmp5) [1] 7928.56423 109.67176 59.39206 96.29534 55.12120 73.28605 [7] 67.33787 75.32422 62.81667 63.94629 > rowSd(tmp5) [1] 89.042486 10.472428 7.706624 9.813019 7.424365 8.560727 8.205965 [8] 8.678953 7.925697 7.996643 > rowMax(tmp5) [1] 470.23088 89.68967 87.83055 89.00798 85.44488 82.99385 82.42931 [8] NA 88.08714 82.44129 > rowMin(tmp5) [1] 62.89080 53.83215 57.81162 58.12919 56.50081 53.39587 53.11546 NA [9] 60.42605 57.48307 > > colMeans(tmp5) [1] NA 73.05145 69.63079 76.08830 67.63022 70.83582 67.86731 67.02839 [9] 71.36074 72.82036 70.36917 67.38892 70.48635 69.29140 72.14838 68.50362 [17] 64.98307 69.79349 69.91175 75.85453 > colSums(tmp5) [1] NA 730.5145 696.3079 760.8830 676.3022 708.3582 678.6731 670.2839 [9] 713.6074 728.2036 703.6917 673.8892 704.8635 692.9140 721.4838 685.0362 [17] 649.8307 697.9349 699.1175 758.5453 > colVars(tmp5) [1] NA 44.28770 62.20434 72.33613 69.35490 130.87732 64.04584 [8] 76.59202 86.77004 114.91417 67.95310 67.04968 51.02378 19.76199 [15] 135.32989 74.92313 69.85546 54.42492 30.29984 100.39644 > colSd(tmp5) [1] NA 6.654900 7.886973 8.505065 8.327959 11.440162 8.002864 [8] 8.751687 9.315044 10.719803 8.243367 8.188387 7.143093 4.445446 [15] 11.633137 8.655815 8.357958 7.377325 5.504529 10.019802 > colMax(tmp5) [1] NA 84.01275 80.64762 87.83055 80.96574 88.08714 79.92157 82.01018 [9] 86.32084 89.68967 82.37926 82.99385 78.75654 75.22675 89.00798 82.85273 [17] 83.96017 82.93490 79.35588 91.01513 > colMin(tmp5) [1] NA 63.57424 56.45140 63.60317 53.83215 57.53114 57.48307 55.32593 [9] 53.11546 55.35819 59.19297 57.81162 60.22911 60.42605 54.14987 57.18110 [17] 53.39587 58.39146 61.00547 59.24347 > > Max(tmp5,na.rm=TRUE) [1] 470.2309 > Min(tmp5,na.rm=TRUE) [1] 53.11546 > mean(tmp5,na.rm=TRUE) [1] 72.52487 > Sum(tmp5,na.rm=TRUE) [1] 14432.45 > Var(tmp5,na.rm=TRUE) [1] 876.3512 > > rowMeans(tmp5,na.rm=TRUE) [1] 93.28009 71.73369 67.72243 73.03833 72.79818 67.18775 68.70683 71.53551 [9] 70.47707 68.71932 > rowSums(tmp5,na.rm=TRUE) [1] 1865.602 1434.674 1354.449 1460.767 1455.964 1343.755 1374.137 1359.175 [9] 1409.541 1374.386 > rowVars(tmp5,na.rm=TRUE) [1] 7928.56423 109.67176 59.39206 96.29534 55.12120 73.28605 [7] 67.33787 75.32422 62.81667 63.94629 > rowSd(tmp5,na.rm=TRUE) [1] 89.042486 10.472428 7.706624 9.813019 7.424365 8.560727 8.205965 [8] 8.678953 7.925697 7.996643 > rowMax(tmp5,na.rm=TRUE) [1] 470.23088 89.68967 87.83055 89.00798 85.44488 82.99385 82.42931 [8] 86.32084 88.08714 82.44129 > rowMin(tmp5,na.rm=TRUE) [1] 62.89080 53.83215 57.81162 58.12919 56.50081 53.39587 53.11546 55.35819 [9] 60.42605 57.48307 > > colMeans(tmp5,na.rm=TRUE) [1] 120.22308 73.05145 69.63079 76.08830 67.63022 70.83582 67.86731 [8] 67.02839 71.36074 72.82036 70.36917 67.38892 70.48635 69.29140 [15] 72.14838 68.50362 64.98307 69.79349 69.91175 75.85453 > colSums(tmp5,na.rm=TRUE) [1] 1082.0077 730.5145 696.3079 760.8830 676.3022 708.3582 678.6731 [8] 670.2839 713.6074 728.2036 703.6917 673.8892 704.8635 692.9140 [15] 721.4838 685.0362 649.8307 697.9349 699.1175 758.5453 > colVars(tmp5,na.rm=TRUE) [1] 17256.59358 44.28770 62.20434 72.33613 69.35490 130.87732 [7] 64.04584 76.59202 86.77004 114.91417 67.95310 67.04968 [13] 51.02378 19.76199 135.32989 74.92313 69.85546 54.42492 [19] 30.29984 100.39644 > colSd(tmp5,na.rm=TRUE) [1] 131.364354 6.654900 7.886973 8.505065 8.327959 11.440162 [7] 8.002864 8.751687 9.315044 10.719803 8.243367 8.188387 [13] 7.143093 4.445446 11.633137 8.655815 8.357958 7.377325 [19] 5.504529 10.019802 > colMax(tmp5,na.rm=TRUE) [1] 470.23088 84.01275 80.64762 87.83055 80.96574 88.08714 79.92157 [8] 82.01018 86.32084 89.68967 82.37926 82.99385 78.75654 75.22675 [15] 89.00798 82.85273 83.96017 82.93490 79.35588 91.01513 > colMin(tmp5,na.rm=TRUE) [1] 66.22913 63.57424 56.45140 63.60317 53.83215 57.53114 57.48307 55.32593 [9] 53.11546 55.35819 59.19297 57.81162 60.22911 60.42605 54.14987 57.18110 [17] 53.39587 58.39146 61.00547 59.24347 > > # now set an entire row to NA > > tmp5[which.row,] <- NA > rowMeans(tmp5,na.rm=TRUE) [1] 93.28009 71.73369 67.72243 73.03833 72.79818 67.18775 68.70683 NaN [9] 70.47707 68.71932 > rowSums(tmp5,na.rm=TRUE) [1] 1865.602 1434.674 1354.449 1460.767 1455.964 1343.755 1374.137 0.000 [9] 1409.541 1374.386 > rowVars(tmp5,na.rm=TRUE) [1] 7928.56423 109.67176 59.39206 96.29534 55.12120 73.28605 [7] 67.33787 NA 62.81667 63.94629 > rowSd(tmp5,na.rm=TRUE) [1] 89.042486 10.472428 7.706624 9.813019 7.424365 8.560727 8.205965 [8] NA 7.925697 7.996643 > rowMax(tmp5,na.rm=TRUE) [1] 470.23088 89.68967 87.83055 89.00798 85.44488 82.99385 82.42931 [8] NA 88.08714 82.44129 > rowMin(tmp5,na.rm=TRUE) [1] 62.89080 53.83215 57.81162 58.12919 56.50081 53.39587 53.11546 NA [9] 60.42605 57.48307 > > > # now set an entire col to NA > > > tmp5[,which.col] <- NA > colMeans(tmp5,na.rm=TRUE) [1] NaN 73.93294 68.66348 76.77099 67.09341 71.59047 68.65687 65.36375 [9] 69.69851 74.76060 71.61097 67.76329 69.81910 69.01445 70.94147 67.11618 [17] 64.67487 69.10215 69.85137 75.93805 > colSums(tmp5,na.rm=TRUE) [1] 0.0000 665.3965 617.9713 690.9389 603.8407 644.3142 617.9118 588.2737 [9] 627.2866 672.8454 644.4987 609.8696 628.3719 621.1301 638.4732 604.0456 [17] 582.0738 621.9193 628.6623 683.4424 > colVars(tmp5,na.rm=TRUE) [1] NA 41.08211 59.45327 76.13491 74.78237 140.83014 65.03834 [8] 54.99187 66.53235 86.92743 59.09898 73.85421 52.39299 21.36935 [15] 135.85885 62.63252 77.51878 55.85095 34.04630 112.86753 > colSd(tmp5,na.rm=TRUE) [1] NA 6.409533 7.710595 8.725532 8.647680 11.867188 8.064635 [8] 7.415651 8.156737 9.323488 7.687586 8.593847 7.238300 4.622699 [15] 11.655850 7.914071 8.804475 7.473349 5.834921 10.623913 > colMax(tmp5,na.rm=TRUE) [1] -Inf 84.01275 80.64762 87.83055 80.96574 88.08714 79.92157 80.94555 [9] 79.89325 89.68967 82.37926 82.99385 78.75654 75.22675 89.00798 82.85273 [17] 83.96017 82.93490 79.35588 91.01513 > colMin(tmp5,na.rm=TRUE) [1] Inf 63.57424 56.45140 63.60317 53.83215 57.53114 57.48307 55.32593 [9] 53.11546 58.31456 60.86933 57.81162 60.22911 60.42605 54.14987 57.18110 [17] 53.39587 58.39146 61.00547 59.24347 > > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 3 > which.col <- 1 > cat(which.row," ",which.col,"\n") 3 1 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > rowVars(tmp5,na.rm=TRUE) [1] 292.0172 284.4690 243.9764 109.0202 144.5950 150.0647 292.0506 144.1971 [9] 201.2296 207.9308 > apply(copymatrix,1,var,na.rm=TRUE) [1] 292.0172 284.4690 243.9764 109.0202 144.5950 150.0647 292.0506 144.1971 [9] 201.2296 207.9308 > > > > copymatrix <- matrix(rnorm(200,150,15),10,20) > > tmp5[1:10,1:20] <- copymatrix > which.row <- 1 > which.col <- 3 > cat(which.row," ",which.col,"\n") 1 3 > tmp5[which.row,which.col] <- NA > copymatrix[which.row,which.col] <- NA > > colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE) [1] 5.684342e-14 -2.842171e-13 -5.684342e-14 -5.684342e-14 -8.526513e-14 [6] -1.705303e-13 0.000000e+00 5.684342e-14 2.842171e-13 2.842171e-14 [11] 4.263256e-14 -1.421085e-13 -1.705303e-13 -2.273737e-13 1.136868e-13 [16] -1.136868e-13 1.989520e-13 2.842171e-14 2.273737e-13 -1.989520e-13 > > > > > > > > > > > ## making sure these things agree > ## > ## first when there is no NA > > > > agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){ + + if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){ + stop("No agreement in Max") + } + + + if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){ + stop("No agreement in Min") + } + + + if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){ + + cat(Sum(buff.matrix,na.rm=TRUE),"\n") + cat(sum(r.matrix,na.rm=TRUE),"\n") + cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n") + + stop("No agreement in Sum") + } + + if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){ + stop("No agreement in mean") + } + + + if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){ + stop("No agreement in Var") + } + + + + if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowMeans") + } + + + if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colMeans") + } + + + if(any(abs(rowSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in rowSums") + } + + + if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){ + stop("No agreement in colSums") + } + + ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when + ### computing variance + my.Var <- function(x,na.rm=FALSE){ + if (all(is.na(x))){ + return(NA) + } else { + var(x,na.rm=na.rm) + } + + } + + if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in rowVars") + } + + + if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMax") + } + + + + if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + + if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMin") + } + + if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colMedian") + } + + if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){ + stop("No agreement in colRanges") + } + + + + } > > > > > > > > > > for (rep in 1:20){ + copymatrix <- matrix(rnorm(200,150,15),10,20) + + tmp5[1:10,1:20] <- copymatrix + + + agree.checks(tmp5,copymatrix) + + ## now lets assign some NA values and check agreement + + which.row <- sample(1:10,1,replace=TRUE) + which.col <- sample(1:20,1,replace=TRUE) + + cat(which.row," ",which.col,"\n") + + tmp5[which.row,which.col] <- NA + copymatrix[which.row,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ## make an entire row NA + tmp5[which.row,] <- NA + copymatrix[which.row,] <- NA + + + agree.checks(tmp5,copymatrix) + + ### also make an entire col NA + tmp5[,which.col] <- NA + copymatrix[,which.col] <- NA + + agree.checks(tmp5,copymatrix) + + ### now make 1 element non NA with NA in the rest of row and column + + tmp5[which.row,which.col] <- rnorm(1,150,15) + copymatrix[which.row,which.col] <- tmp5[which.row,which.col] + + agree.checks(tmp5,copymatrix) + } 6 7 3 6 3 13 4 17 7 12 1 6 8 8 10 12 7 11 8 7 10 6 7 19 10 3 10 7 5 4 3 19 10 18 6 14 7 12 4 15 There were 50 or more warnings (use warnings() to see the first 50) > > > ### now test 1 by n and n by 1 matrix > > > err.tol <- 1e-12 > > rm(tmp5) > > dataset1 <- rnorm(100) > dataset2 <- rnorm(100) > > tmp <- createBufferedMatrix(1,100) > tmp[1,] <- dataset1 > > tmp2 <- createBufferedMatrix(100,1) > tmp2[,1] <- dataset2 > > > > > > Max(tmp) [1] 2.718597 > Min(tmp) [1] -2.124447 > mean(tmp) [1] 0.05635757 > Sum(tmp) [1] 5.635757 > Var(tmp) [1] 0.9009438 > > rowMeans(tmp) [1] 0.05635757 > rowSums(tmp) [1] 5.635757 > rowVars(tmp) [1] 0.9009438 > rowSd(tmp) [1] 0.9491806 > rowMax(tmp) [1] 2.718597 > rowMin(tmp) [1] -2.124447 > > colMeans(tmp) [1] 0.397120247 0.271656445 0.034419224 -0.927864771 0.451074690 [6] 0.792506865 1.013283307 0.561158116 1.566929771 2.718597360 [11] -0.425337901 0.446098760 -0.581009463 -0.766354177 -0.337502669 [16] -0.613333719 -0.718835322 0.895621743 0.951421085 -1.029499601 [21] -1.450578944 0.001323189 -0.986935875 0.563682243 1.626055789 [26] 0.112417754 -0.828451181 -0.152588006 -0.368485988 -0.250513220 [31] -0.401078608 -1.401268248 -0.514225746 1.685465027 -0.335511592 [36] 0.458518237 -0.819680870 0.460710330 1.332008787 0.451897597 [41] -0.129320651 0.377891639 -0.227394422 -0.426900455 -0.051524027 [46] -0.229464608 -0.805175450 -0.107303717 -0.212378219 0.118725511 [51] 0.245007795 -0.819593389 0.170685164 0.895341063 -0.487545201 [56] -1.452325391 1.444079146 1.014682279 -0.450200129 1.079291879 [61] -0.496427061 0.961335025 -1.776989184 0.154336594 -0.996247073 [66] 0.714157852 -2.124447355 -0.020442286 0.117994750 -0.867388623 [71] 2.031601181 -0.119821464 0.553829907 1.106365788 1.839990897 [76] 0.474561858 0.081279124 1.345992775 -1.996835658 -1.736787546 [81] -0.380061811 1.865757583 -1.462236137 0.491752651 -0.082485206 [86] 0.267653351 0.975960210 0.424019113 -1.868975233 1.422380418 [91] -0.221033637 0.939294723 -0.063345955 0.283555211 -0.084842842 [96] 1.359892337 -0.391630107 0.130897371 -1.164016301 0.117672710 > colSums(tmp) [1] 0.397120247 0.271656445 0.034419224 -0.927864771 0.451074690 [6] 0.792506865 1.013283307 0.561158116 1.566929771 2.718597360 [11] -0.425337901 0.446098760 -0.581009463 -0.766354177 -0.337502669 [16] -0.613333719 -0.718835322 0.895621743 0.951421085 -1.029499601 [21] -1.450578944 0.001323189 -0.986935875 0.563682243 1.626055789 [26] 0.112417754 -0.828451181 -0.152588006 -0.368485988 -0.250513220 [31] -0.401078608 -1.401268248 -0.514225746 1.685465027 -0.335511592 [36] 0.458518237 -0.819680870 0.460710330 1.332008787 0.451897597 [41] -0.129320651 0.377891639 -0.227394422 -0.426900455 -0.051524027 [46] -0.229464608 -0.805175450 -0.107303717 -0.212378219 0.118725511 [51] 0.245007795 -0.819593389 0.170685164 0.895341063 -0.487545201 [56] -1.452325391 1.444079146 1.014682279 -0.450200129 1.079291879 [61] -0.496427061 0.961335025 -1.776989184 0.154336594 -0.996247073 [66] 0.714157852 -2.124447355 -0.020442286 0.117994750 -0.867388623 [71] 2.031601181 -0.119821464 0.553829907 1.106365788 1.839990897 [76] 0.474561858 0.081279124 1.345992775 -1.996835658 -1.736787546 [81] -0.380061811 1.865757583 -1.462236137 0.491752651 -0.082485206 [86] 0.267653351 0.975960210 0.424019113 -1.868975233 1.422380418 [91] -0.221033637 0.939294723 -0.063345955 0.283555211 -0.084842842 [96] 1.359892337 -0.391630107 0.130897371 -1.164016301 0.117672710 > colVars(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colSd(tmp) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > colMax(tmp) [1] 0.397120247 0.271656445 0.034419224 -0.927864771 0.451074690 [6] 0.792506865 1.013283307 0.561158116 1.566929771 2.718597360 [11] -0.425337901 0.446098760 -0.581009463 -0.766354177 -0.337502669 [16] -0.613333719 -0.718835322 0.895621743 0.951421085 -1.029499601 [21] -1.450578944 0.001323189 -0.986935875 0.563682243 1.626055789 [26] 0.112417754 -0.828451181 -0.152588006 -0.368485988 -0.250513220 [31] -0.401078608 -1.401268248 -0.514225746 1.685465027 -0.335511592 [36] 0.458518237 -0.819680870 0.460710330 1.332008787 0.451897597 [41] -0.129320651 0.377891639 -0.227394422 -0.426900455 -0.051524027 [46] -0.229464608 -0.805175450 -0.107303717 -0.212378219 0.118725511 [51] 0.245007795 -0.819593389 0.170685164 0.895341063 -0.487545201 [56] -1.452325391 1.444079146 1.014682279 -0.450200129 1.079291879 [61] -0.496427061 0.961335025 -1.776989184 0.154336594 -0.996247073 [66] 0.714157852 -2.124447355 -0.020442286 0.117994750 -0.867388623 [71] 2.031601181 -0.119821464 0.553829907 1.106365788 1.839990897 [76] 0.474561858 0.081279124 1.345992775 -1.996835658 -1.736787546 [81] -0.380061811 1.865757583 -1.462236137 0.491752651 -0.082485206 [86] 0.267653351 0.975960210 0.424019113 -1.868975233 1.422380418 [91] -0.221033637 0.939294723 -0.063345955 0.283555211 -0.084842842 [96] 1.359892337 -0.391630107 0.130897371 -1.164016301 0.117672710 > colMin(tmp) [1] 0.397120247 0.271656445 0.034419224 -0.927864771 0.451074690 [6] 0.792506865 1.013283307 0.561158116 1.566929771 2.718597360 [11] -0.425337901 0.446098760 -0.581009463 -0.766354177 -0.337502669 [16] -0.613333719 -0.718835322 0.895621743 0.951421085 -1.029499601 [21] -1.450578944 0.001323189 -0.986935875 0.563682243 1.626055789 [26] 0.112417754 -0.828451181 -0.152588006 -0.368485988 -0.250513220 [31] -0.401078608 -1.401268248 -0.514225746 1.685465027 -0.335511592 [36] 0.458518237 -0.819680870 0.460710330 1.332008787 0.451897597 [41] -0.129320651 0.377891639 -0.227394422 -0.426900455 -0.051524027 [46] -0.229464608 -0.805175450 -0.107303717 -0.212378219 0.118725511 [51] 0.245007795 -0.819593389 0.170685164 0.895341063 -0.487545201 [56] -1.452325391 1.444079146 1.014682279 -0.450200129 1.079291879 [61] -0.496427061 0.961335025 -1.776989184 0.154336594 -0.996247073 [66] 0.714157852 -2.124447355 -0.020442286 0.117994750 -0.867388623 [71] 2.031601181 -0.119821464 0.553829907 1.106365788 1.839990897 [76] 0.474561858 0.081279124 1.345992775 -1.996835658 -1.736787546 [81] -0.380061811 1.865757583 -1.462236137 0.491752651 -0.082485206 [86] 0.267653351 0.975960210 0.424019113 -1.868975233 1.422380418 [91] -0.221033637 0.939294723 -0.063345955 0.283555211 -0.084842842 [96] 1.359892337 -0.391630107 0.130897371 -1.164016301 0.117672710 > colMedians(tmp) [1] 0.397120247 0.271656445 0.034419224 -0.927864771 0.451074690 [6] 0.792506865 1.013283307 0.561158116 1.566929771 2.718597360 [11] -0.425337901 0.446098760 -0.581009463 -0.766354177 -0.337502669 [16] -0.613333719 -0.718835322 0.895621743 0.951421085 -1.029499601 [21] -1.450578944 0.001323189 -0.986935875 0.563682243 1.626055789 [26] 0.112417754 -0.828451181 -0.152588006 -0.368485988 -0.250513220 [31] -0.401078608 -1.401268248 -0.514225746 1.685465027 -0.335511592 [36] 0.458518237 -0.819680870 0.460710330 1.332008787 0.451897597 [41] -0.129320651 0.377891639 -0.227394422 -0.426900455 -0.051524027 [46] -0.229464608 -0.805175450 -0.107303717 -0.212378219 0.118725511 [51] 0.245007795 -0.819593389 0.170685164 0.895341063 -0.487545201 [56] -1.452325391 1.444079146 1.014682279 -0.450200129 1.079291879 [61] -0.496427061 0.961335025 -1.776989184 0.154336594 -0.996247073 [66] 0.714157852 -2.124447355 -0.020442286 0.117994750 -0.867388623 [71] 2.031601181 -0.119821464 0.553829907 1.106365788 1.839990897 [76] 0.474561858 0.081279124 1.345992775 -1.996835658 -1.736787546 [81] -0.380061811 1.865757583 -1.462236137 0.491752651 -0.082485206 [86] 0.267653351 0.975960210 0.424019113 -1.868975233 1.422380418 [91] -0.221033637 0.939294723 -0.063345955 0.283555211 -0.084842842 [96] 1.359892337 -0.391630107 0.130897371 -1.164016301 0.117672710 > colRanges(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 0.3971202 0.2716564 0.03441922 -0.9278648 0.4510747 0.7925069 1.013283 [2,] 0.3971202 0.2716564 0.03441922 -0.9278648 0.4510747 0.7925069 1.013283 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [1,] 0.5611581 1.56693 2.718597 -0.4253379 0.4460988 -0.5810095 -0.7663542 [2,] 0.5611581 1.56693 2.718597 -0.4253379 0.4460988 -0.5810095 -0.7663542 [,15] [,16] [,17] [,18] [,19] [,20] [,21] [1,] -0.3375027 -0.6133337 -0.7188353 0.8956217 0.9514211 -1.0295 -1.450579 [2,] -0.3375027 -0.6133337 -0.7188353 0.8956217 0.9514211 -1.0295 -1.450579 [,22] [,23] [,24] [,25] [,26] [,27] [,28] [1,] 0.001323189 -0.9869359 0.5636822 1.626056 0.1124178 -0.8284512 -0.152588 [2,] 0.001323189 -0.9869359 0.5636822 1.626056 0.1124178 -0.8284512 -0.152588 [,29] [,30] [,31] [,32] [,33] [,34] [,35] [1,] -0.368486 -0.2505132 -0.4010786 -1.401268 -0.5142257 1.685465 -0.3355116 [2,] -0.368486 -0.2505132 -0.4010786 -1.401268 -0.5142257 1.685465 -0.3355116 [,36] [,37] [,38] [,39] [,40] [,41] [,42] [1,] 0.4585182 -0.8196809 0.4607103 1.332009 0.4518976 -0.1293207 0.3778916 [2,] 0.4585182 -0.8196809 0.4607103 1.332009 0.4518976 -0.1293207 0.3778916 [,43] [,44] [,45] [,46] [,47] [,48] [1,] -0.2273944 -0.4269005 -0.05152403 -0.2294646 -0.8051755 -0.1073037 [2,] -0.2273944 -0.4269005 -0.05152403 -0.2294646 -0.8051755 -0.1073037 [,49] [,50] [,51] [,52] [,53] [,54] [,55] [1,] -0.2123782 0.1187255 0.2450078 -0.8195934 0.1706852 0.8953411 -0.4875452 [2,] -0.2123782 0.1187255 0.2450078 -0.8195934 0.1706852 0.8953411 -0.4875452 [,56] [,57] [,58] [,59] [,60] [,61] [,62] [1,] -1.452325 1.444079 1.014682 -0.4502001 1.079292 -0.4964271 0.961335 [2,] -1.452325 1.444079 1.014682 -0.4502001 1.079292 -0.4964271 0.961335 [,63] [,64] [,65] [,66] [,67] [,68] [,69] [1,] -1.776989 0.1543366 -0.9962471 0.7141579 -2.124447 -0.02044229 0.1179947 [2,] -1.776989 0.1543366 -0.9962471 0.7141579 -2.124447 -0.02044229 0.1179947 [,70] [,71] [,72] [,73] [,74] [,75] [,76] [1,] -0.8673886 2.031601 -0.1198215 0.5538299 1.106366 1.839991 0.4745619 [2,] -0.8673886 2.031601 -0.1198215 0.5538299 1.106366 1.839991 0.4745619 [,77] [,78] [,79] [,80] [,81] [,82] [,83] [1,] 0.08127912 1.345993 -1.996836 -1.736788 -0.3800618 1.865758 -1.462236 [2,] 0.08127912 1.345993 -1.996836 -1.736788 -0.3800618 1.865758 -1.462236 [,84] [,85] [,86] [,87] [,88] [,89] [,90] [1,] 0.4917527 -0.08248521 0.2676534 0.9759602 0.4240191 -1.868975 1.42238 [2,] 0.4917527 -0.08248521 0.2676534 0.9759602 0.4240191 -1.868975 1.42238 [,91] [,92] [,93] [,94] [,95] [,96] [,97] [1,] -0.2210336 0.9392947 -0.06334596 0.2835552 -0.08484284 1.359892 -0.3916301 [2,] -0.2210336 0.9392947 -0.06334596 0.2835552 -0.08484284 1.359892 -0.3916301 [,98] [,99] [,100] [1,] 0.1308974 -1.164016 0.1176727 [2,] 0.1308974 -1.164016 0.1176727 > > > Max(tmp2) [1] 2.793489 > Min(tmp2) [1] -2.77111 > mean(tmp2) [1] -0.04101966 > Sum(tmp2) [1] -4.101966 > Var(tmp2) [1] 0.9916988 > > rowMeans(tmp2) [1] 0.70203096 -0.41828081 0.54742103 2.37790440 1.89121575 -0.33622599 [7] 0.24509505 -1.84169198 -0.19754842 -2.77111041 -0.77551214 -0.34379909 [13] -0.04062589 -0.48307029 -1.02563877 -1.04277382 -0.86841729 1.06621097 [19] -0.48299694 -0.38042333 -0.58592177 -0.10181475 -1.24478648 1.10595106 [25] 0.56941059 1.42856462 -0.43548526 -0.51630987 0.83765508 1.14189599 [31] -0.45535557 -0.92100462 -0.94409402 0.33108341 -0.78016526 -0.24425090 [37] 0.58739534 -0.99167304 1.87444214 -1.73863496 -0.54022974 0.46989150 [43] 0.55972817 -0.63570914 2.79348860 -0.96279869 -1.06127300 0.38812211 [49] 0.34647873 1.51030211 0.46888506 1.16663623 -0.92527965 -0.69550844 [55] -0.72651980 0.12028649 -0.33689149 -0.37210419 1.67245572 0.09342507 [61] 0.80735886 -0.86319469 2.59452979 -0.03718546 -0.44822088 0.73237228 [67] 1.04816225 1.20115333 0.14154111 0.13183796 -0.27512065 0.39942846 [73] 0.44492361 -0.59288523 -0.61848064 -0.86338800 -1.30838825 -0.42029994 [79] -1.64227295 0.09875351 0.23179093 0.85285225 1.33259332 0.41618075 [85] -1.39610268 -0.72445779 -0.90314612 0.79954093 -0.13533477 -1.54119384 [91] 0.27182845 -0.15181910 0.56807327 -0.21274999 -1.58046124 -0.38648838 [97] -0.15096030 1.13655808 -1.16832203 0.03697751 > rowSums(tmp2) [1] 0.70203096 -0.41828081 0.54742103 2.37790440 1.89121575 -0.33622599 [7] 0.24509505 -1.84169198 -0.19754842 -2.77111041 -0.77551214 -0.34379909 [13] -0.04062589 -0.48307029 -1.02563877 -1.04277382 -0.86841729 1.06621097 [19] -0.48299694 -0.38042333 -0.58592177 -0.10181475 -1.24478648 1.10595106 [25] 0.56941059 1.42856462 -0.43548526 -0.51630987 0.83765508 1.14189599 [31] -0.45535557 -0.92100462 -0.94409402 0.33108341 -0.78016526 -0.24425090 [37] 0.58739534 -0.99167304 1.87444214 -1.73863496 -0.54022974 0.46989150 [43] 0.55972817 -0.63570914 2.79348860 -0.96279869 -1.06127300 0.38812211 [49] 0.34647873 1.51030211 0.46888506 1.16663623 -0.92527965 -0.69550844 [55] -0.72651980 0.12028649 -0.33689149 -0.37210419 1.67245572 0.09342507 [61] 0.80735886 -0.86319469 2.59452979 -0.03718546 -0.44822088 0.73237228 [67] 1.04816225 1.20115333 0.14154111 0.13183796 -0.27512065 0.39942846 [73] 0.44492361 -0.59288523 -0.61848064 -0.86338800 -1.30838825 -0.42029994 [79] -1.64227295 0.09875351 0.23179093 0.85285225 1.33259332 0.41618075 [85] -1.39610268 -0.72445779 -0.90314612 0.79954093 -0.13533477 -1.54119384 [91] 0.27182845 -0.15181910 0.56807327 -0.21274999 -1.58046124 -0.38648838 [97] -0.15096030 1.13655808 -1.16832203 0.03697751 > rowVars(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowSd(tmp2) [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA > rowMax(tmp2) [1] 0.70203096 -0.41828081 0.54742103 2.37790440 1.89121575 -0.33622599 [7] 0.24509505 -1.84169198 -0.19754842 -2.77111041 -0.77551214 -0.34379909 [13] -0.04062589 -0.48307029 -1.02563877 -1.04277382 -0.86841729 1.06621097 [19] -0.48299694 -0.38042333 -0.58592177 -0.10181475 -1.24478648 1.10595106 [25] 0.56941059 1.42856462 -0.43548526 -0.51630987 0.83765508 1.14189599 [31] -0.45535557 -0.92100462 -0.94409402 0.33108341 -0.78016526 -0.24425090 [37] 0.58739534 -0.99167304 1.87444214 -1.73863496 -0.54022974 0.46989150 [43] 0.55972817 -0.63570914 2.79348860 -0.96279869 -1.06127300 0.38812211 [49] 0.34647873 1.51030211 0.46888506 1.16663623 -0.92527965 -0.69550844 [55] -0.72651980 0.12028649 -0.33689149 -0.37210419 1.67245572 0.09342507 [61] 0.80735886 -0.86319469 2.59452979 -0.03718546 -0.44822088 0.73237228 [67] 1.04816225 1.20115333 0.14154111 0.13183796 -0.27512065 0.39942846 [73] 0.44492361 -0.59288523 -0.61848064 -0.86338800 -1.30838825 -0.42029994 [79] -1.64227295 0.09875351 0.23179093 0.85285225 1.33259332 0.41618075 [85] -1.39610268 -0.72445779 -0.90314612 0.79954093 -0.13533477 -1.54119384 [91] 0.27182845 -0.15181910 0.56807327 -0.21274999 -1.58046124 -0.38648838 [97] -0.15096030 1.13655808 -1.16832203 0.03697751 > rowMin(tmp2) [1] 0.70203096 -0.41828081 0.54742103 2.37790440 1.89121575 -0.33622599 [7] 0.24509505 -1.84169198 -0.19754842 -2.77111041 -0.77551214 -0.34379909 [13] -0.04062589 -0.48307029 -1.02563877 -1.04277382 -0.86841729 1.06621097 [19] -0.48299694 -0.38042333 -0.58592177 -0.10181475 -1.24478648 1.10595106 [25] 0.56941059 1.42856462 -0.43548526 -0.51630987 0.83765508 1.14189599 [31] -0.45535557 -0.92100462 -0.94409402 0.33108341 -0.78016526 -0.24425090 [37] 0.58739534 -0.99167304 1.87444214 -1.73863496 -0.54022974 0.46989150 [43] 0.55972817 -0.63570914 2.79348860 -0.96279869 -1.06127300 0.38812211 [49] 0.34647873 1.51030211 0.46888506 1.16663623 -0.92527965 -0.69550844 [55] -0.72651980 0.12028649 -0.33689149 -0.37210419 1.67245572 0.09342507 [61] 0.80735886 -0.86319469 2.59452979 -0.03718546 -0.44822088 0.73237228 [67] 1.04816225 1.20115333 0.14154111 0.13183796 -0.27512065 0.39942846 [73] 0.44492361 -0.59288523 -0.61848064 -0.86338800 -1.30838825 -0.42029994 [79] -1.64227295 0.09875351 0.23179093 0.85285225 1.33259332 0.41618075 [85] -1.39610268 -0.72445779 -0.90314612 0.79954093 -0.13533477 -1.54119384 [91] 0.27182845 -0.15181910 0.56807327 -0.21274999 -1.58046124 -0.38648838 [97] -0.15096030 1.13655808 -1.16832203 0.03697751 > > colMeans(tmp2) [1] -0.04101966 > colSums(tmp2) [1] -4.101966 > colVars(tmp2) [1] 0.9916988 > colSd(tmp2) [1] 0.9958407 > colMax(tmp2) [1] 2.793489 > colMin(tmp2) [1] -2.77111 > colMedians(tmp2) [1] -0.1746838 > colRanges(tmp2) [,1] [1,] -2.771110 [2,] 2.793489 > > dataset1 <- matrix(dataset1,1,100) > > agree.checks(tmp,dataset1) > > dataset2 <- matrix(dataset2,100,1) > agree.checks(tmp2,dataset2) > > > tmp <- createBufferedMatrix(10,10) > > tmp[1:10,1:10] <- rnorm(100) > colApply(tmp,sum) [1] -0.6689309 4.5923486 -4.5641377 1.1939372 -0.9758522 -3.4454270 [7] -1.1173951 1.1904598 -1.4863064 0.1916905 > colApply(tmp,quantile)[,1] [,1] [1,] -1.30280403 [2,] -0.44350012 [3,] -0.08102138 [4,] 0.46963618 [5,] 0.95159132 > > rowApply(tmp,sum) [1] -2.7793220 -0.2962742 0.1840324 -2.5533994 0.9890925 -5.9475543 [7] 2.0813990 1.2544030 0.3522377 1.6257721 > rowApply(tmp,rank)[1:10,] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [1,] 6 8 4 8 9 7 7 1 4 4 [2,] 9 4 5 10 2 9 8 6 7 6 [3,] 1 6 6 5 8 2 1 3 6 8 [4,] 7 2 1 2 7 5 2 10 10 10 [5,] 10 3 2 7 10 6 4 9 2 1 [6,] 5 1 7 1 4 4 10 5 8 3 [7,] 2 5 3 4 1 10 5 7 5 5 [8,] 4 10 10 3 3 8 9 8 1 7 [9,] 3 9 8 6 5 1 3 2 9 9 [10,] 8 7 9 9 6 3 6 4 3 2 > > tmp <- createBufferedMatrix(5,20) > > tmp[1:5,1:20] <- rnorm(100) > colApply(tmp,sum) [1] 2.9346906 -2.4566452 -2.8446312 0.5881732 3.5252055 1.9426912 [7] 1.4874036 -2.4216007 1.5320801 -3.6335714 -0.8270993 1.7612556 [13] 2.1894134 0.2930934 -1.5485516 1.2354242 1.3960705 -4.4030408 [19] -1.4221045 -2.0957523 > colApply(tmp,quantile)[,1] [,1] [1,] -0.73377292 [2,] -0.09074539 [3,] 1.19262372 [4,] 1.19447505 [5,] 1.37211011 > > rowApply(tmp,sum) [1] 1.5384373 -0.2033503 -4.3130671 -1.2696553 1.4801395 > rowApply(tmp,rank)[1:5,] [,1] [,2] [,3] [,4] [,5] [1,] 18 12 18 19 7 [2,] 2 8 6 5 18 [3,] 20 1 3 2 11 [4,] 17 13 13 14 5 [5,] 13 16 12 17 19 > > > as.matrix(tmp) [,1] [,2] [,3] [,4] [,5] [,6] [1,] 1.19262372 -1.1608181 1.937646 0.89742966 0.4323685 0.7516454 [2,] -0.09074539 -0.5076225 -1.399170 0.02530504 0.9623820 -0.7220085 [3,] 1.37211011 -1.1685667 -1.797057 0.16522985 0.0814576 1.6849454 [4,] 1.19447505 -0.7851678 -1.786610 0.30922661 0.8562798 1.0997490 [5,] -0.73377292 1.1655299 0.200559 -0.80901793 1.1927176 -0.8716400 [,7] [,8] [,9] [,10] [,11] [,12] [1,] 1.2061622 0.8938545 0.7734347 -1.3682172 -0.8807270 -0.7002852 [2,] 0.7717964 -0.9963175 -1.2414784 -0.1350620 0.4938250 1.4542048 [3,] 0.2906918 -1.5016973 -0.3144091 -1.3306109 0.5209626 0.5229186 [4,] -1.9303841 0.1929295 -0.4168410 -0.2201933 -0.1324905 0.1635286 [5,] 1.1491373 -1.0103699 2.7313739 -0.5794880 -0.8286693 0.3208888 [,13] [,14] [,15] [,16] [,17] [,18] [1,] -0.19324484 -0.62322836 -0.4878631 0.3701592 -0.005037802 -0.6449731 [2,] -0.12848677 -0.83369334 -0.6094303 1.1277143 1.348034667 -1.0731728 [3,] 2.12948590 -0.07965053 -0.1455711 -2.0963693 0.862959549 -1.7975704 [4,] 0.06568444 1.43701999 -0.7867806 0.7860377 0.714894163 -0.6774066 [5,] 0.31597463 0.39264566 0.4810935 1.0478823 -1.524780052 -0.2099180 [,19] [,20] [1,] -0.4154702 -0.4370219 [2,] 1.6255895 -0.2750148 [3,] -1.0791252 -0.6332009 [4,] -0.8184766 -0.5351296 [5,] -0.7346221 -0.2153850 > > > is.BufferedMatrix(tmp) [1] TRUE > > as.BufferedMatrix(as.matrix(tmp)) BufferedMatrix object Matrix size: 5 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 800 bytes. > > > > subBufferedMatrix(tmp,1:5,1:5) BufferedMatrix object Matrix size: 5 5 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 679 bytes. Disk usage : 200 bytes. > subBufferedMatrix(tmp,,5:8) BufferedMatrix object Matrix size: 5 4 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 587 bytes. Disk usage : 160 bytes. > subBufferedMatrix(tmp,1:3,) BufferedMatrix object Matrix size: 3 20 Buffer size: 1 1 Directory: C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 Prefix: BM Mode: Col mode Read Only: FALSE Memory usage : 2 Kilobytes. Disk usage : 480 bytes. > > > rm(tmp) > > > ### > ### Testing colnames and rownames > ### > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 row1 0.2327517 -0.2231568 -0.4705044 -2.532784 0.3206439 0.3618033 1.198973 col8 col9 col10 col11 col12 col13 col14 row1 -1.712606 1.444423 -0.1767836 0.9276966 -2.264682 -0.6318881 0.3532127 col15 col16 col17 col18 col19 col20 row1 -0.1850125 1.386311 -0.09740129 0.6416086 0.9482467 -1.146023 > tmp[,"col10"] col10 row1 -0.1767836 row2 1.2392675 row3 -1.4240015 row4 0.2297550 row5 -0.5195527 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 row1 0.2327517 -0.2231568 -0.4705044 -2.53278378 0.3206439 0.3618033 1.198973 row5 0.5849189 0.7748054 -0.2759836 -0.08759283 -0.1251700 1.5356895 -2.330997 col8 col9 col10 col11 col12 col13 col14 row1 -1.71260561 1.444423 -0.1767836 0.9276966 -2.264682 -0.6318881 0.3532127 row5 0.08241155 1.189233 -0.5195527 0.2931176 1.685508 1.6817549 1.4889269 col15 col16 col17 col18 col19 col20 row1 -0.1850125 1.386311 -0.09740129 0.6416086 0.9482467 -1.1460227 row5 0.0711635 1.158349 2.14974929 0.4261994 0.1778779 0.3838016 > tmp[,c("col6","col20")] col6 col20 row1 0.3618033 -1.14602266 row2 1.2911922 -0.09890373 row3 0.4259398 0.45364208 row4 0.7428402 -0.73850496 row5 1.5356895 0.38380155 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 0.3618033 -1.1460227 row5 1.5356895 0.3838016 > > > > > tmp["row1",] <- rnorm(20,mean=10) > tmp[,"col10"] <- rnorm(5,mean=30) > tmp[c("row1","row5"),] <- rnorm(40,mean=50) > tmp[,c("col6","col20")] <- rnorm(10,mean=75) > tmp[c("row1","row5"),c("col6","col20")] <- rnorm(4,mean=105) > > tmp["row1",] col1 col2 col3 col4 col5 col6 col7 col8 row1 51.33282 49.31695 49.32569 51.65989 50.78601 105.2092 49.97899 49.48499 col9 col10 col11 col12 col13 col14 col15 col16 row1 50.11469 49.77131 50.65639 49.7459 50.66864 49.96427 50.13922 48.70027 col17 col18 col19 col20 row1 49.89024 50.73548 50.23727 104.7068 > tmp[,"col10"] col10 row1 49.77131 row2 31.97066 row3 28.00480 row4 29.72328 row5 49.53203 > tmp[c("row1","row5"),] col1 col2 col3 col4 col5 col6 col7 col8 row1 51.33282 49.31695 49.32569 51.65989 50.78601 105.2092 49.97899 49.48499 row5 48.46418 49.98501 50.36521 50.60059 50.36056 104.1316 51.90301 50.96484 col9 col10 col11 col12 col13 col14 col15 col16 row1 50.11469 49.77131 50.65639 49.74590 50.66864 49.96427 50.13922 48.70027 row5 51.09076 49.53203 51.38075 49.90149 48.29205 50.10417 50.49646 50.06223 col17 col18 col19 col20 row1 49.89024 50.73548 50.23727 104.7068 row5 49.25113 49.67770 49.53267 104.8125 > tmp[,c("col6","col20")] col6 col20 row1 105.20924 104.70677 row2 75.31357 74.15149 row3 73.66915 73.67974 row4 75.05684 74.29409 row5 104.13158 104.81252 > tmp[c("row1","row5"),c("col6","col20")] col6 col20 row1 105.2092 104.7068 row5 104.1316 104.8125 > > > subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2] col6 col20 row1 105.2092 104.7068 row5 104.1316 104.8125 > > > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > > tmp[,"col13"] col13 [1,] 1.520503372 [2,] 0.004979752 [3,] -0.432348120 [4,] -0.101264944 [5,] -0.710026282 > tmp[,c("col17","col7")] col17 col7 [1,] 0.5231836 -2.1531088 [2,] -0.5579404 -1.2932790 [3,] 0.4095041 0.6222233 [4,] -0.7178322 0.7674453 [5,] 0.2596517 -0.6491762 > > subBufferedMatrix(tmp,,c("col6","col20"))[,1:2] col6 col20 [1,] 0.8671610 0.4604846 [2,] 1.2281539 -1.7185673 [3,] 0.4827324 1.6470272 [4,] -1.6444345 -2.6368303 [5,] 0.1413020 0.9915021 > subBufferedMatrix(tmp,1,c("col6"))[,1] col1 [1,] 0.867161 > subBufferedMatrix(tmp,1:2,c("col6"))[,1] col6 [1,] 0.867161 [2,] 1.228154 > > > > tmp <- createBufferedMatrix(5,20) > tmp[1:5,1:20] <- rnorm(100) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > > > > subBufferedMatrix(tmp,c("row3","row1"),)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row3 1.4710035 1.306287 0.3094822 1.4994290 1.941492 -1.3215931 0.1337215 row1 -0.3213974 1.076793 0.6502030 -0.4547996 0.735751 -0.5590936 -0.3370374 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row3 -0.1506534 1.9479795 0.3704457 0.2056059 0.9216758 -1.34236 0.8257642 row1 -0.4128162 -0.9485654 0.1096110 -0.1642196 -1.5309038 -0.64009 0.3607116 [,15] [,16] [,17] [,18] [,19] [,20] row3 1.553648 2.14726629 -0.6898234 0.5273120 0.1642857 1.959788 row1 -1.677560 0.01157776 0.3847271 0.8158925 -0.1115331 -1.106290 > subBufferedMatrix(tmp,c("row2"),1:10)[,1:10] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row2 0.3930253 -0.981617 0.1804017 0.2871397 -0.3531202 0.008388901 -0.4846858 [,8] [,9] [,10] row2 2.076071 -0.2388618 -0.1535572 > subBufferedMatrix(tmp,c("row5"),1:20)[,1:20] [,1] [,2] [,3] [,4] [,5] [,6] [,7] row5 0.9016184 1.789618 -1.200187 0.07103615 -0.1315169 0.03698302 0.3394691 [,8] [,9] [,10] [,11] [,12] [,13] [,14] row5 0.5437718 -0.09421897 0.6357107 -1.952386 -2.387514 0.02764645 -0.1053073 [,15] [,16] [,17] [,18] [,19] [,20] row5 -0.1871945 -1.194181 -0.1311776 -0.2451842 0.2689185 1.611629 > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > colnames(tmp) [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > rownames(tmp) [1] "row1" "row2" "row3" "row4" "row5" > > > colnames(tmp) <- NULL > rownames(tmp) <- NULL > > colnames(tmp) NULL > rownames(tmp) NULL > > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > dimnames(tmp) <- NULL > > colnames(tmp) <- colnames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > dimnames(tmp) <- NULL > rownames(tmp) <- rownames(tmp,do.NULL=FALSE) > dimnames(tmp) [[1]] [1] "row1" "row2" "row3" "row4" "row5" [[2]] NULL > > dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE))) > dimnames(tmp) [[1]] NULL [[2]] [1] "col1" "col2" "col3" "col4" "col5" "col6" "col7" "col8" "col9" [10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18" [19] "col19" "col20" > > > > ### > ### Testing logical indexing > ### > ### > > tmp <- createBufferedMatrix(230,15) > tmp[1:230,1:15] <- rnorm(230*15) > x <-tmp[1:230,1:15] > > for (rep in 1:10){ + which.cols <- sample(c(TRUE,FALSE),15,replace=T) + which.rows <- sample(c(TRUE,FALSE),230,replace=T) + + if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){ + stop("No agreement when logical indexing\n") + } + + if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] == x[,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix cols\n") + } + if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] == x[which.rows,])){ + stop("No agreement when logical indexing in subBufferedMatrix rows\n") + } + + + if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]== x[which.rows,which.cols])){ + stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n") + } + } > > > ## > ## Test the ReadOnlyMode > ## > > ReadOnlyMode(tmp) <pointer: 0x00000000074c2d28> > is.ReadOnlyMode(tmp) [1] TRUE > > filenames(tmp) [1] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f4115a1078" [2] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f477065192" [3] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f473e7845" [4] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f474b72656" [5] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f48bf4777" [6] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f47bd67ec2" [7] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f46d8a131" [8] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f4366e1cad" [9] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f434d628a0" [10] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f424924440" [11] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f416717dd" [12] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f4324f39fc" [13] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f46bce1e10" [14] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f469df61fe" [15] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BM11f4663e38db" > > > ### testing coercion functions > ### > > tmp <- as(tmp,"matrix") > tmp <- as(tmp,"BufferedMatrix") > > > > ### testing whether can move storage from one location to another > > MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE) <pointer: 0x0000000004fd11c8> > MoveStorageDirectory(tmp,getwd(),full.path=TRUE) <pointer: 0x0000000004fd11c8> Warning message: In dir.create(new.directory) : 'C:\Users\biocbuild\bbs-3.9-bioc\meat\BufferedMatrix.Rcheck\tests_x64' already exists > > > RowMode(tmp) <pointer: 0x0000000004fd11c8> > rowMedians(tmp) [1] -0.0718086002 0.3854369575 -0.3742856934 -0.2400688737 0.5994829710 [6] 0.0331623175 -0.3190214027 -0.2742244134 0.1812454530 0.2341492344 [11] -0.1575958390 -0.4256069692 -0.4443331675 0.3564054009 0.0431795031 [16] 0.4780247661 -0.4823307476 0.1338339819 -0.1573837661 -0.4738705576 [21] -0.7133499967 -0.2994406581 0.2160447184 -0.2902666261 0.1673020518 [26] -0.0942819121 0.0001720034 0.1532907813 -0.3261181345 -0.3852720223 [31] 0.4750375508 -0.0705520068 0.1046483615 0.1300640907 -0.0124797188 [36] 0.4657596034 -0.2953109679 0.4413972294 -0.3252247907 -0.2630029553 [41] 0.5774958646 -0.5079936187 -0.1325010856 0.2352583476 -0.4120232799 [46] 0.1281823811 0.2292079742 0.4853935074 -0.2670189289 0.2689464434 [51] -0.2142118960 0.1370574994 -0.1185474142 -0.2750088381 0.0674711670 [56] 0.8930944415 0.3645018445 0.4435438236 -0.2343393321 -0.4610460250 [61] 0.2069052095 0.2575706647 -0.3715227044 -0.1017562034 0.4579777141 [66] 0.0159452278 0.2924854540 0.0805796533 -0.2237209979 0.2007544245 [71] 0.0307619476 -0.0785803799 0.2750236962 -0.0562663185 -0.0339521190 [76] -0.0333545557 0.1385248405 0.1705893607 0.1103406639 0.1280403975 [81] 0.2757923562 -0.5917360376 -0.6895683147 0.0588276529 0.5885284091 [86] -0.0770755811 -0.3937694263 -0.5265573065 0.4049529106 0.1390670175 [91] 0.1306785166 0.3249684714 -0.2685331096 0.5206662386 0.5713929127 [96] 0.6321626617 -0.3835001752 -0.2144579057 -0.2357520028 0.0967701472 [101] 0.2156127763 0.4809361623 0.2734774641 0.1644533742 -0.0511736642 [106] -0.2019815378 0.1310072284 0.3893562291 0.1231978185 -0.5632477981 [111] 0.4253713128 -0.1211116277 -0.2466261529 -0.1228636220 -0.3817084256 [116] -0.1656962429 -0.5875223347 -0.2713522610 -0.0432460973 0.6465061592 [121] 0.4082032224 0.0563936049 -0.2179439609 -0.3018575459 -0.6344409821 [126] 0.0507065452 -0.4004891542 0.1389421105 -0.1958996298 -0.0334556992 [131] 0.3004312068 -0.1595548288 -0.2512497631 0.0250432105 -0.2402871212 [136] 0.5926109077 -0.0799556578 0.0427399890 0.2221653470 0.0033113089 [141] -0.0306654024 -0.1959535435 -0.1181495692 -0.2468822082 -0.4073766707 [146] 0.7309705819 -0.1206581856 -0.6341606474 0.2486482647 0.1670731737 [151] 0.1642012047 -0.2199149739 -0.1679093680 -0.3215848718 -0.1390147399 [156] -0.0952574845 -0.1975420481 0.1488703863 -0.2953607074 -0.1080439023 [161] 0.5409310239 -0.5081841475 -0.0964405155 0.0636506935 0.2526425122 [166] -0.1338040386 -0.0687319756 -0.2030083551 0.3392355278 0.1689652830 [171] 0.1850976466 0.0646162602 0.0731513333 0.4583257958 0.0068305778 [176] 0.1123532983 -0.3492039058 0.1973010991 -0.4998982936 0.2233414745 [181] -0.0760959466 -0.1148108448 0.0859004261 0.1935990669 0.0566645280 [186] 0.8960987797 0.4221550787 0.5557057010 -0.2672877672 0.5483677197 [191] 0.0841750057 0.0240789408 0.0282813283 0.0215825152 0.5911561901 [196] -0.4981033155 -0.2684458888 0.2984264043 -0.0261557951 0.5716023477 [201] 0.0665841552 -0.2406182802 -0.2603783049 0.6260753625 -0.7337221202 [206] -0.0047936361 0.4513942142 -0.2509063580 0.2361718563 -0.3512433245 [211] 0.2761897468 0.2988709728 -0.1716677790 -0.3267964183 -0.1977769383 [216] 0.1343576118 0.4757339262 0.6298101235 0.5479549927 -0.3066013696 [221] 0.2064564758 -0.3373723176 0.0567751084 -0.1150978648 0.0222407162 [226] -0.6546676163 0.2580776196 -0.0617193160 0.2471764999 0.1208594637 > > proc.time() user system elapsed 3.51 8.12 12.03 |
BufferedMatrix.Rcheck/tests_i386/rawCalltesting.Rout R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > prefix <- "dbmtest" > directory <- getwd() > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x029c2820> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x029c2820> > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x029c2820> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x029c2820> > rm(P) > > #P <- .Call("R_bm_Destroy",P) > #.Call("R_bm_Destroy",P) > #.Call("R_bm_Test_C",P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 0 Buffer Rows: 1 Buffer Cols: 1 Printing Values <pointer: 0x029a3200> > .Call("R_bm_AddColumn",P) <pointer: 0x029a3200> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 1 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x029a3200> > .Call("R_bm_AddColumn",P) <pointer: 0x029a3200> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x029a3200> > rm(P) > > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x038ac648> > .Call("R_bm_AddColumn",P) <pointer: 0x038ac648> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x038ac648> > > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x038ac648> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x038ac648> > > .Call("R_bm_RowMode",P) <pointer: 0x038ac648> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x038ac648> > > .Call("R_bm_ColMode",P) <pointer: 0x038ac648> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x038ac648> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0276f820> > .Call("R_bm_SetPrefix",P,"BufferedMatrixFile") <pointer: 0x0276f820> > .Call("R_bm_AddColumn",P) <pointer: 0x0276f820> > .Call("R_bm_AddColumn",P) <pointer: 0x0276f820> > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile1bc023aa4f87" "BufferedMatrixFile1bc051fa6fcb" > rm(P) > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFile1bc023aa4f87" "BufferedMatrixFile1bc051fa6fcb" > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x027a3510> > .Call("R_bm_AddColumn",P) <pointer: 0x027a3510> > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x027a3510> > .Call("R_bm_isReadOnlyMode",P) [1] TRUE > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x027a3510> > .Call("R_bm_isReadOnlyMode",P) [1] FALSE > .Call("R_bm_isRowMode",P) [1] FALSE > .Call("R_bm_RowMode",P) <pointer: 0x027a3510> > .Call("R_bm_isRowMode",P) [1] TRUE > .Call("R_bm_ColMode",P) <pointer: 0x027a3510> > .Call("R_bm_isRowMode",P) [1] FALSE > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x028b4450> > .Call("R_bm_AddColumn",P) <pointer: 0x028b4450> > > .Call("R_bm_getSize",P) [1] 10 2 > .Call("R_bm_getBufferSize",P) [1] 1 1 > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x028b4450> > > .Call("R_bm_getBufferSize",P) [1] 5 5 > .Call("R_bm_ResizeBuffer",P,-1,5) <pointer: 0x028b4450> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x02a43938> > .Call("R_bm_getValue",P,3,3) [1] 6 > > .Call("R_bm_getValue",P,100000,10000) [1] NA > .Call("R_bm_setValue",P,3,3,12345.0) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 12345.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x02a43938> > rm(P) > > proc.time() user system elapsed 0.48 0.09 0.56 |
BufferedMatrix.Rcheck/tests_x64/rawCalltesting.Rout R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > prefix <- "dbmtest" > directory <- getwd() > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006066d38> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006066d38> > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x0000000006066d38> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 10 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000006066d38> > rm(P) > > #P <- .Call("R_bm_Destroy",P) > #.Call("R_bm_Destroy",P) > #.Call("R_bm_Test_C",P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 0 Buffer Rows: 1 Buffer Cols: 1 Printing Values <pointer: 0x0000000007962cc8> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000007962cc8> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 1 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000007962cc8> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000007962cc8> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000007962cc8> > rm(P) > > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,5) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0000000005090028> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000005090028> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000005090028> > > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x0000000005090028> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000005090028> > > .Call("R_bm_RowMode",P) <pointer: 0x0000000005090028> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000005090028> > > .Call("R_bm_ColMode",P) <pointer: 0x0000000005090028> > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 2 Buffer Rows: 5 Buffer Cols: 5 Printing Values 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 <pointer: 0x0000000005090028> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x00000000052418b0> > .Call("R_bm_SetPrefix",P,"BufferedMatrixFile") <pointer: 0x00000000052418b0> > .Call("R_bm_AddColumn",P) <pointer: 0x00000000052418b0> > .Call("R_bm_AddColumn",P) <pointer: 0x00000000052418b0> > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFilec703b534b93" "BufferedMatrixFilec70e7d18a0" > rm(P) > dir(pattern="BufferedMatrixFile") [1] "BufferedMatrixFilec703b534b93" "BufferedMatrixFilec70e7d18a0" > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x0000000005b8d4a0> > .Call("R_bm_AddColumn",P) <pointer: 0x0000000005b8d4a0> > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x0000000005b8d4a0> > .Call("R_bm_isReadOnlyMode",P) [1] TRUE > .Call("R_bm_ReadOnlyModeToggle",P) <pointer: 0x0000000005b8d4a0> > .Call("R_bm_isReadOnlyMode",P) [1] FALSE > .Call("R_bm_isRowMode",P) [1] FALSE > .Call("R_bm_RowMode",P) <pointer: 0x0000000005b8d4a0> > .Call("R_bm_isRowMode",P) [1] TRUE > .Call("R_bm_ColMode",P) <pointer: 0x0000000005b8d4a0> > .Call("R_bm_isRowMode",P) [1] FALSE > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_setRows",P,10) [1] TRUE > .Call("R_bm_AddColumn",P) <pointer: 0x00000000075213a0> > .Call("R_bm_AddColumn",P) <pointer: 0x00000000075213a0> > > .Call("R_bm_getSize",P) [1] 10 2 > .Call("R_bm_getBufferSize",P) [1] 1 1 > .Call("R_bm_ResizeBuffer",P,5,5) <pointer: 0x00000000075213a0> > > .Call("R_bm_getBufferSize",P) [1] 5 5 > .Call("R_bm_ResizeBuffer",P,-1,5) <pointer: 0x00000000075213a0> > rm(P) > > > P <- .Call("R_bm_Create",prefix,directory,1,1) > .Call("R_bm_Test_C",P) RBufferedMatrix Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Assigning Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 6.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x00000000074a8908> > .Call("R_bm_getValue",P,3,3) [1] 6 > > .Call("R_bm_getValue",P,100000,10000) [1] NA > .Call("R_bm_setValue",P,3,3,12345.0) [1] TRUE > .Call("R_bm_Test_C2",P) Checking dimensions Rows: 5 Cols: 5 Buffer Rows: 1 Buffer Cols: 1 Printing Values 0.000000 1.000000 2.000000 3.000000 4.000000 1.000000 2.000000 3.000000 4.000000 5.000000 2.000000 3.000000 4.000000 5.000000 6.000000 3.000000 4.000000 5.000000 12345.000000 7.000000 4.000000 5.000000 6.000000 7.000000 8.000000 <pointer: 0x00000000074a8908> > rm(P) > > proc.time() user system elapsed 0.46 0.09 0.54 |
BufferedMatrix.Rcheck/tests_i386/Rcodetesting.Rout R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > Temp <- createBufferedMatrix(100) > dim(Temp) [1] 100 0 > buffer.dim(Temp) [1] 1 1 > > > proc.time() user system elapsed 0.34 0.04 0.37 |
BufferedMatrix.Rcheck/tests_x64/Rcodetesting.Rout R Under development (unstable) (2019-03-09 r76216) -- "Unsuffered Consequences" Copyright (C) 2019 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths()); Attaching package: 'BufferedMatrix' The following objects are masked from 'package:base': colMeans, colSums, rowMeans, rowSums > > Temp <- createBufferedMatrix(100) > dim(Temp) [1] 100 0 > buffer.dim(Temp) [1] 1 1 > > > proc.time() user system elapsed 0.46 0.06 0.51 |