
Package ‘OPWeight’
December 10, 2024

Type Package

Title Optimal p-value weighting with independent information

Version 1.28.0

Date 2017-02-26

Description This package perform weighted-pvalue based multiple
hypothesis test and provides corresponding information such as
ranking probability, weight, significant tests, etc . To
conduct this testing procedure, the testing method apply a
probabilistic relationship between the test rank and the
corresponding test effect size.

Depends R (>= 3.4.0),

License Artistic-2.0

LazyData true

Imports graphics, qvalue, MASS, tibble, stats,

Suggests airway, BiocStyle, cowplot, DESeq2, devtools, ggplot2,
gridExtra, knitr, Matrix, rmarkdown, scales, testthat

VignetteBuilder knitr

biocViews ImmunoOncology, BiomedicalInformatics, MultipleComparison,
Regression, RNASeq, SNP

RoxygenNote 6.0.1

URL https://github.com/mshasan/OPWeight

Bugreports https://github.com/mshasan/OPWeight/issues

git_url https://git.bioconductor.org/packages/OPWeight

git_branch RELEASE_3_20

git_last_commit 5b1ec32

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-12-09

Author Mohamad Hasan [aut, cre],
Paul Schliekelman [aut]

Maintainer Mohamad Hasan <shakilmohamad7@gmail.com>

1

https://github.com/mshasan/OPWeight

2 opw

Contents
opw . 2
prob_rank_givenEffect . 4
prob_rank_givenEffect_approx . 6
prob_rank_givenEffect_exact . 7
prob_rank_givenEffect_simu . 8
weight_binary . 10
weight_by_delta . 11
weight_continuous . 12

Index 14

opw Perform Optimal Pvalue Weighting

Description

A function to perform weighted pvalue multiple hypothesis test. This function compute the prob-
abilities of the ranks of the filter statistics given the effect sizes, and consequently the weights if
neighter the weights nor the probabilities are given. Then provides the number of rejected null
hypothesis and the list of the rejected pvalues as well as the corresponing filter statistics.

Usage

opw(pvalue, filter, weight = NULL, ranksProb = NULL,
mean_filterEffect = NULL, mean_testEffect = NULL,
effectType = c("continuous", "binary"), alpha = 0.05, nrep = 10000,
tail = 1L, delInterval = 0.001, method = c("BH", "BON"), ...)

Arguments

pvalue Numeric vector of pvalues of the test statistics
filter Numeric vector of filter statistics
weight An optional numeric weight vector not required
ranksProb An optional numeric vector of the ranks probability of the filters given the mean

effect
mean_filterEffect

Numeric, value of the mean filter effect of the true alternatives
mean_testEffect

Numeric, value of the mean test effect of the true alterantives
effectType Character ("continuous" or "binary"), type of effect sizes
alpha Numeric, significance level of the hypothesis test
nrep Integer, number of replications for importance sampling, default value is 10,000,

can be increased to obtain smoother probability curves
tail Integer (1 or 2), right-tailed or two-tailed hypothesis test. default is right-tailed

test.
delInterval Numeric, interval between the delta values of a sequence. Note that, delta is

a LaGrange multiplier, necessary to normalize the weight
method Character ("BH" or "BON"), type of methods is used to obtain the results;

Benjemini-Hochberg or Bonferroni
... Arguments passed to internal functions

opw 3

Details

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni > 0,

then the mean_testEffect and mean_filterEffect should be mean of the test and filter effect
sizes, respectively. This is called hypothesis testing for the continuous effect sizes.

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni = epsilon,

then mean_testEffect and mean_filterEffect should be median or any discrete value of the test
and filter effect sizes. This is called hypothesis testing for the Binary effect sizes, where epsilon
refers to a fixed value.

The main goal of the function is to compute the probabilities of the ranks from the pvalues and
the filter statistics, consequently the weights. Although weights ranksProb are optional, opw has
the options so that one can compute the probabilities and the weights externally if necessary (see
examples).

Internally, opw function compute the ranksProb and consequently the weights, then uses the pval-
ues to make conclusions about hypotheses. Therefore, if ranksProb is given then mean_filterEffect
and are redundant, and should not be provided to the funciton. Although ranksProb is not required
to the function, One can compute ranksProb by using the function prob_rank_givenEffect.

The function internally compute mean_filterEffect and mean_testEffect from a simple lin-
ear regression with box-cox transformation between the test and filter statistics, where the filters
are regressed on the test statistics. Thus, filters need to be positive to apply boxcox from the
R library MASS. Then the estimated mean_filterEffect and mean_testEffect are used to ob-
tian the ranksProb and the weights. Thus, in order to apply the function properly, it is crucial
to understand the uses mean_filterEffect and mean_testEffect. If mean_filterEffect and
mean_testEffect are not provided then the test statistics computed from the pvalues will be used
to compute the relationship between the filter statistics and the test statistics.

If one of the mean effects mean_filterEffect and mean_testEffect are not provided then the
missing mean effect will be computed internally.

Value

totalTests Integer, total number of hypothesis tests evaluated

nullProp Numeric, estimated propotion of the true null hypothesis

ranksProb Numeric vector of ranks probability given the mean filter effect, p(rank | ey = mean_filterEffect)

weight Numeric vector of normalized weight

rejections Integer, total number of rejections

rejections_list data frame, list of rejected p-values and the corresponding filter statistics and
the adjusted p-values if method = "BH" used.

Author(s)

Mohamad S. Hasan, shakilmohamad7@gmail.com

4 prob_rank_givenEffect

See Also

prob_rank_givenEffect weight_binary weight_continuous qvalue dnorm

Examples

generate pvalues and filter statistics
m = 1000
set.seed(3)
filters = runif(m, min = 0, max = 2.5) # filter statistics
H = rbinom(m, size = 1, prob = 0.1) # hypothesis true or false
tests = rnorm(m, mean = H * filters) # Z-score
pvals = 1 - pnorm(tests) # pvalue

general use
results <- opw(pvalue = pvals, filter = filters, effectType = "continuous",

method = "BH")

supply the mean effects for both the filters and the tests externally
mod <- lm(log(filters) ~ tests)
et = mean(tests)
ey = mod$coef[[1]] + mod$coef[[2]]*et
results2 <- opw(pvalue = pvals, filter = filters,

mean_filterEffect = ey, mean_testEffect = et, tail = 2,
effectType = "continuous", method = "BH")

supply the rank probabilities externally
library(qvalue)
ranks <- 1:m
nullProp = qvalue(p = pvals, pi0.method = "bootstrap")$pi0
m0 = ceiling(nullProp*m)
m1 = m - m0
probs <- sapply(ranks, prob_rank_givenEffect, et = ey, ey = ey,

nrep = 10000, m0 = m0, m1 = m1)
results3 <- opw(pvalue = pvals, filter = filters, ranksProb = probs,

effectType = "continuous", tail = 2, method = "BH")

supply weight externally
wgt <- weight_continuous(alpha = .05, et = et, m = m, ranksProb = probs)
results4 <- opw(pvalue = pvals, filter = filters, weight = wgt,

effectType = "continuous", alpha = .05, method = "BH")

prob_rank_givenEffect Probability of rank of test given effect size

Description

Comnpute the probability of rank of a test being higher than any other tests given the effect size
from external information.

Usage

prob_rank_givenEffect(k, et, ey, nrep = 10000, m0, m1)

prob_rank_givenEffect 5

Arguments

k Integer, rank of a test
et Numeric, effect of the targeted test for importance sampling
ey Numeric, mean filter efffect from the external information
nrep Integer, number of replications for importance sampling
m0 Integer, number of true null hypothesis
m1 Integer, number of true alternative hypothesis

Details

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni > 0,

then ey should be mean of the filter effect sizes, This is called hypothesis testing for the continuous
effect sizes.

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni = epsilon,

then ey should be median or any discrete value of the filter effect sizes. This is called hypothesis
testing for the Binary effect sizes.

If monitor = TRUE then a window will open to see the progress of the computation. It is useful for
a large number of tests

m1 and m0 can be estimated using qvalue from a bioconductor package qvalue.

Value

prob Numeric, probability of the rank of a test

Author(s)

Mohamad S. Hasan, shakilmohamad7@gmail.com

See Also

dnorm pnorm rnorm qvalue

Examples

compute the probability of the rank of a test being third if all tests are
from the true null
prob <- prob_rank_givenEffect(k = 3, et = 0, ey = 0, nrep = 10000,

m0 = 50, m1 = 50)

compute the probabilities of the ranks of a test being rank 1 to 100 if the
targeted test effect is 2 and the overall mean filter effect is 1.
ranks <- 1:100
prob <- sapply(ranks, prob_rank_givenEffect, et = 2, ey = 1, nrep = 10000,

m0 = 50, m1 = 50)

plot
plot(ranks,prob)

6 prob_rank_givenEffect_approx

prob_rank_givenEffect_approx

Probability of rank of test given effect size by normal approximation

Description

A normal approximation to comnpute the probability of rank of a test being higher than any other
test given the effect size from external information.

Usage

prob_rank_givenEffect_approx(k, et, ey, nrep = 10000, m0, m1,
effectType = c("binary", "continuous"))

Arguments

k Integer, rank of a test

et Numeric, effect of the targeted test for importance sampling

ey Numeric, mean/median filter efffect from external information

nrep Integer, number of replications for importance sampling

m0 Integer, number of true null hypothesis

m1 Integer, number of true alternative hypothesis

effectType Character ("continuous" or "binary"), type of effect sizes

Details

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni > 0,

then ey should be mean of the filter effect sizes, This is called hypothesis testing for the continuous
effect sizes.

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni = epsilon,

then ey should be median or any discrete value of the filter effect sizes. This is called hypothesis
testing for the Binary effect sizes.

m1 and m0 can be estimated using qvalue from a bioconductor package qvalue.

Value

prob Numeric, probability of the rank of a test

Author(s)

Mohamad S. Hasan, shakilmohamad7@gmail.com

See Also

dnorm pnorm rnorm qvalue

prob_rank_givenEffect_exact 7

Examples

compute the probability of the rank of a test being third if all tests are
from the true null
prob <- prob_rank_givenEffect(k = 3, et = 0, ey = 0, nrep = 10000,

m0 = 50, m1 = 50)

compute the probabilities of the ranks of a test being rank 1 to 100 if the
targeted test effect is 2 and the overall mean filter effect is 1.
ranks <- 1:100
prob <- sapply(ranks, prob_rank_givenEffect, et = 2, ey = 1, nrep = 10000,

m0 = 50, m1 = 50)

plot
plot(ranks,prob)

prob_rank_givenEffect_exact

Probability of rank of test given effect size by exact method

Description

An exact method to comnpute the probability of rank of a test being higher than any other test given
the effect size from external information.

Usage

prob_rank_givenEffect_exact(k, et, ey, nrep = 10000, m0, m1,
effectType = c("binary", "continuous"))

Arguments

k Integer, rank of a test

et Numeric, effect of the targeted test for importance sampling

ey Numeric, mean/median filter efffect from external information

nrep Integer, number of replications for importance sampling

m0 Integer, number of true null hypothesis

m1 Integer, number of true alternative hypothesis

effectType Character ("continuous" or "binary"), type of effect sizes

Details

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni > 0,

then ey should be mean of the filter effect sizes, This is called hypothesis testing for the continuous
effect sizes.

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni = epsilon,

8 prob_rank_givenEffect_simu

then ey should be median or any discrete value of the filter effect sizes. This is called hypothesis
testing for the Binary effect sizes.

m1 and m0 can be estimated using qvalue from a bioconductor package qvalue.

Value

prob Numeric, probability of the rank of a test

Author(s)

Mohamad S. Hasan, shakilmohamad7@gmail.com

See Also

dnorm pnorm rnorm qvalue

Examples

compute the probability of the rank of a test being third if all tests are
from the true null
prob <- prob_rank_givenEffect_exact(k=3, et=0, ey=0, nrep=10000, m0=50, m1=50,

effectType= "continuous")

compute the probabilities of the ranks of a test being rank 1 to 100 if the
targeted test effect is 2 and the overall mean filter effect is 1.
ranks <- 1:100
prob <- sapply(ranks, prob_rank_givenEffect, et = 2, ey = 1, nrep = 10000,

m0 = 50, m1 = 50)

plot
plot(ranks, prob)

prob_rank_givenEffect_simu

Probability of rank of test given effect size by simulations

Description

A simulation approach to comnpute the probability of rank of a test being higher than any other test
given the effect size from the external information.

Usage

prob_rank_givenEffect_simu(s, ey, e.one, m0, m1, effectType = c("binary",
"continuous"))

prob_rank_givenEffect_simu 9

Arguments

s number of samples of test statistics composed of null and alternative tests

ey Numeric, filter test efffect from the external information

e.one Numeric, one test effect that will vary across all tests

m0 Integer, number of true null hypothesis

m1 Integer, number of true alternative hypothesis

effectType Character ("continuous" or "binary"), type of effect sizes

Details

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni > 0,

then ey should be mean of the filter effect sizes, This is called hypothesis testing for the continuous
effect sizes.

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni = epsilon,

then ey should be median or any discrete value of the filter effect sizes. This is called hypothesis
testing for the Binary effect sizes.

This is a simulation approach to compute the probability of the rank, P(rank | effect = ey) to verify
the actual P(rank | effect = ey). Suppose, we have a vector of m = m1+m0 observations, where the
first m1 observations are from the true alternative and second m0 are from the true null models. If
we pick two tests one from the first position and the other from the (m0+1)-th position, then we
would expect that the first observation’s rank is greater than m0, and (m1+1)-th observation’s rank
is less than or equal to m1. However, this is not always true, especially when the effect size of the
test statistics is low, but the above scenerio become obvious as the the effect size increases. m1 and
m0 can be estimated using qvalue from a bioconductor package qvalue.

Value

r0 Integer, rank of the null test statistic
r1 Integer, rank of the alternative test statistic

Author(s)

Mohamad S. Hasan, shakilmohamad7@gmail.com

See Also

runif rnorm qvalue

Examples

total number of sample generated (use sample size at least 1,000,000)
sampleSize = 10000
m0 = 50
m1 = 50
m = m0 +m1

10 weight_binary

compute rank of the tests
rank <- sapply(1:sampleSize, prob_rank_givenEffect_simu, ey = 1, e.one = 1,

m0 = m0, m1 = m1, effectType = "continuous")

rank may generate missing valuse because of the large effcet size,
therefore, to make a matplot one needs vector of equal size. This procedure
will replace the missing value to make the equal sized vectors
probability of the rank of a null test
prob0 <- rep(NA, m)
prob0_x <- tapply(rank[1,], rank[1,], length)/sampleSize
prob0[as.numeric(names(prob0_x))] <- as.vector(prob0_x)

probability of the rank of an alternative test
prob1 <- rep(NA, m)
prob1_x <- tapply(rank[2,], rank[2,], length)/sampleSize
prob1[as.numeric(names(prob1_x))] <- as.vector(prob1_x)

plot
matplot(1:m, cbind(prob0, prob1), type = "l")

weight_binary Weight for the Binary effect sizes

Description

Compute weight from the probability of the rank given the effect size for the binary effect size

Usage

weight_binary(alpha, et, m, m1, tail = 1L, delInterval = 0.001, ranksProb)

Arguments

alpha Numeric, significance level of the hypothesis test

et Numeric, mean effect size of the test statistics

m Integer, totoal number of hypothesis test

m1 Integer, number of true alternative hypothesis

tail Integer (1 or 2), right-tailed or two-tailed hypothesis test. default is right-tailed
test.

delInterval Numeric, interval between the delta values of a sequence. Note that, delta is
a LaGrange multiplier, necessary to normalize the weight

ranksProb Numeric vector of the ranks probability of the tests given the effect size

Details

If one wants to test
H0 : epsiloni = 0vs.Ha : epsiloni = epsilon,

then et and ey should be median or any discrete value of the test and filter effect sizes, respectively.
This is called hypothesis testing for the Binary effect sizes. m1 can be estimated using qvalue from
a bioconductor package qvalue.

weight_by_delta 11

Value

weight Numeric vector of normalized weight of the tests for the binary case

Author(s)

Mohamad S. Hasan, shakilmohamad7@gmail.com

See Also

prob_rank_givenEffect weight_continuous qvalue

Examples

compute the probabilities of the ranks of a test being rank 1 to 100 if the
targeted test effect is 2 and the overall mean filter effect is 1.
ranks <- 1:100
prob2 <- sapply(ranks, prob_rank_givenEffect, et = 2, ey = 1, nrep = 10000,

m0 = 50, m1 = 50)
plot the prooabbility
plot(ranks, prob2)

compute weight for the binary case
weight_bin <- weight_binary(alpha = .05, et = 1, m = 100, m1 = 50, tail=1,

delInterval = .0001, ranksProb = prob2)

plot the weight
plot(ranks, weight_bin)

weight_by_delta Find sum of weights for the LaGrange multiplier

Description

Compute sum of weights for a given value of the LaGrange multiplier

Usage

weight_by_delta(delta, alpha = 0.05, et, m, m1, tail = 1L, ranksProb,
effectType = c("continuous", "binary"))

Arguments

delta Numeric value of the LagRange multiplier
alpha Numeric, significance level of the hypothesis test
et Numeric, mean effect size of the test statistics
m Integer, totoal number of hypothesis test
m1 Integer, number of true alternative tests
tail Integer (1 or 2), right-tailed or two-tailed hypothesis test. default is right-tailed

test.
ranksProb Numeric vector of the ranks probability of the filter statistics given the effect

size
effectType Character ("continuous" or "binary"), type of effect sizes

12 weight_continuous

Details

To obtain the normalized weight, and to make sure that the sum of the weights is equal to the number
of tests and the weights are positive, an optimal value of the LaGrange multiplier delta needed.
This function will compute the weights for a given value of the LaGrange multiplier and provide
the sum of the weights in return.

Value

sumWeight_per_delta sum of weights per delta value

Author(s)

Mohamad S. Hasan, shakilmohamad7@gmail.com

Examples

generate a sequence of delta
delta <- seq(0, 1, .0001)

compute probability fiven effect
filters = runif(100, min = 0, max = 2.5)
probs <- dnorm(filters, mean = 0, sd = 1)

compute the sum of weights for each delta
weightSum_by_delta <- sapply(delta, weight_by_delta, m = 100, m1 = 50, et = 2,

ranksProb = probs, effectType = "continuous")

weight_continuous Weight for the continuous effect sizes

Description

Compute weight from the probability of the rank given the effect size for the continuous effect size

Usage

weight_continuous(alpha, et, m, tail = 1L, delInterval = 0.001, ranksProb)

Arguments

alpha Numeric, significance level of the hypothesis test

et Numeric, mean effect size of the test statistics

m Integer, totoal number of hypothesis test

tail Integer (1 or 2), right-tailed or two-tailed hypothesis test. default is right-tailed
test.

delInterval Numeric, interval between the delta values of a sequence. Note that, delta is
a LaGrange multiplier, necessary to normalize the weight

ranksProb Numeric vector of ranks probability of the tests given the effect size

weight_continuous 13

Details

If one wants to test
H0 : epsiloni = 0vs.Ha : ϵi > 0,

then et and ey should be mean value of the test and filter effect sizes, respectively. This is called
hypothesis testing for the continuous effect sizes.

Value

weight Numeric vector of normalized weight of the tests for the continuous case

Author(s)

Mohamad S. Hasan, shakilmohamad7@gmail.com

See Also

prob_rank_givenEffect weight_binary

Examples

compute the probabilities of the ranks of a test being rank 1 to 100 if the
targeted test effect is 2 and the overall mean filter effect is 1.
ranks <- 1:100
prob2 <- sapply(ranks, prob_rank_givenEffect, et = 2, ey = 1, nrep = 10000,

m0 = 50, m1 = 50)

plot the prooabbility
plot(ranks, prob2)

compute weight for the continuous case
weight_cont <- weight_continuous(alpha = .05, et = 1, m = 100, tail = 1,

delInterval = .0001, ranksProb = prob2)

plot the weight
plot(ranks, weight_cont)

Index

dnorm, 4–6, 8

opw, 2

pnorm, 5, 6, 8
prob_rank_givenEffect, 3, 4, 4, 11, 13
prob_rank_givenEffect_approx, 6
prob_rank_givenEffect_exact, 7
prob_rank_givenEffect_simu, 8

qvalue, 4–6, 8, 9, 11

rnorm, 5, 6, 8, 9
runif, 9

weight_binary, 4, 10, 13
weight_by_delta, 11
weight_continuous, 4, 11, 12

14

	opw
	prob_rank_givenEffect
	prob_rank_givenEffect_approx
	prob_rank_givenEffect_exact
	prob_rank_givenEffect_simu
	weight_binary
	weight_by_delta
	weight_continuous
	Index

