DelayedTensor 1.12.0
Authors: Koki Tsuyuzaki [aut, cre]
Last modified: 2024-10-29 16:15:12.703724
Compiled: Tue Oct 29 22:15:52 2024
einsum
einsum
is an easy and intuitive way to write tensor operations.
It was originally introduced by
Numpy
1 https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
package of Python but similar tools have been implemented in other languages
(e.g. R, Julia) inspired by Numpy
.
In this vignette, we will use CRAN einsum package first.
einsum
is named after
Einstein summation2 https://en.wikipedia.org/wiki/Einstein_notation
introduced by Albert Einstein,
which is a notational convention that implies summation over
a set of indexed terms in a formula.
Here, we consider a simple example of einsum
; matrix multiplication.
If we naively implement the matrix multiplication,
the calculation would look like the following in a for loop.
A <- matrix(runif(3*4), nrow=3, ncol=4)
B <- matrix(runif(4*5), nrow=4, ncol=5)
C <- matrix(0, nrow=3, ncol=5)
I <- nrow(A)
J <- ncol(A)
K <- ncol(B)
for(i in 1:I){
for(j in 1:J){
for(k in 1:K){
C[i,k] = C[i,k] + A[i,j] * B[j,k]
}
}
}
Therefore, any programming language can implement this. However, when analyzing tensor data, such operations tend to be more complicated and increase the possibility of causing bugs because the order of tensors is larger or more tensors are handled simultaneously. In addition, several programming languages, especially R, are known to significantly slow down the speed of computation if the code is written in for loop.
Obviously, in the case of the R language, it should be executed using the built-in matrix multiplication function (%*%) prepared by the R, as shown below.
C <- A %*% B
However, more complex operations than matrix multiplication are not always provided by programming languages as standard.
einsum
is a function that solves such a problem.
To put it simply, einsum
is a wrapper for the for loop above.
Like the Einstein summation, it omits many notations such as for,
array size (e.g. I, J, and K), brackets (e.g. {}, (), and []),
and even addition operator (+) and
extracts the array subscripts (e.g. i, j, and k)
to concisely express the tensor operation as follows.
suppressPackageStartupMessages(library("einsum"))
C <- einsum('ij,jk->ik', A, B)
DelayedTensor
CRAN einsum is easy to use because the syntax is almost
the same as that of Numpy
‘s einsum
,
except that it prohibits the implicit modes that do not use’->’.
It is extremely fast because the internal calculation
is actually performed by C++.
When the input tensor is huge, however,
it is not scalable because it assumes that the input is R’s standard array.
Using einsum
of DelayedTensor,
we can augment the CRAN einsum
’s functionality;
in DelayedTensor,
the input DelayedArray objects are divided into
multiple block tensors and the CRAN einsum
is incremently applied in the block processing.
A surprisingly large number of tensor operations can be handled
uniformly in einsum
.
In more detail, einsum
is capable of performing any tensor operation
that can be described by a combination of the following
three operations3 https://ajcr.net/Basic-guide-to-einsum/.
Some typical operations are introduced below. Here we use the arrays and DelayedArray objects below.
suppressPackageStartupMessages(library("DelayedTensor"))
suppressPackageStartupMessages(library("DelayedArray"))
arrA <- array(runif(3), dim=c(3))
arrB <- array(runif(3*3), dim=c(3,3))
arrC <- array(runif(3*4), dim=c(3,4))
arrD <- array(runif(3*3*3), dim=c(3,3,3))
arrE <- array(runif(3*4*5), dim=c(3,4,5))
darrA <- DelayedArray(arrA)
darrB <- DelayedArray(arrB)
darrC <- DelayedArray(arrC)
darrD <- DelayedArray(arrD)
darrE <- DelayedArray(arrE)
If the same subscript is written on both sides of ->,
einsum
will simply output the object without any calculation.
einsum::einsum('i->i', arrA)
## [1] 0.5785867 0.2076113 0.5665381
DelayedTensor::einsum('i->i', darrA)
## <3> DelayedArray object of type "double":
## [1] [2] [3]
## 0.5785867 0.2076113 0.5665381
einsum::einsum('ij->ij', arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.05389769 0.3124297 0.3964108 0.03533784
## [2,] 0.45184319 0.2318520 0.5676610 0.13950279
## [3,] 0.80687012 0.1586763 0.1790592 0.97144475
DelayedTensor::einsum('ij->ij', darrC)
## <3 x 4> DelayedArray object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.05389769 0.31242970 0.39641079 0.03533784
## [2,] 0.45184319 0.23185203 0.56766095 0.13950279
## [3,] 0.80687012 0.15867631 0.17905919 0.97144475
einsum::einsum('ijk->ijk', arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.9687274 0.1218813 0.83998136 0.7743868
## [2,] 0.7050575 0.3505562 0.43283546 0.6997950
## [3,] 0.1075474 0.4163471 0.09213613 0.3955899
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5831130 0.36875376 0.213425413 0.92532950
## [2,] 0.3444818 0.94340927 0.007344825 0.31884529
## [3,] 0.8814741 0.08012255 0.093539749 0.05599022
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2737752 0.4418495 0.3441616 0.1885070
## [2,] 0.9667525 0.5033069 0.7688742 0.9638062
## [3,] 0.6217220 0.9174334 0.1310715 0.9085918
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6208025 0.2682217 0.1083691 0.6678025
## [2,] 0.4860814 0.8287540 0.7625201 0.5540407
## [3,] 0.5504597 0.4530179 0.2181907 0.7525746
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6942352 0.8087171 0.28943829 0.54541677
## [2,] 0.1063025 0.9775259 0.05488169 0.79289853
## [3,] 0.8457256 0.6436444 0.85485394 0.02275462
DelayedTensor::einsum('ijk->ijk', darrE)
## <3 x 4 x 5> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.96872737 0.12188127 0.83998136 0.77438676
## [2,] 0.70505754 0.35055623 0.43283546 0.69979502
## [3,] 0.10754736 0.41634708 0.09213613 0.39558987
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.583113010 0.368753762 0.213425413 0.925329501
## [2,] 0.344481799 0.943409266 0.007344825 0.318845286
## [3,] 0.881474142 0.080122555 0.093539749 0.055990217
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.2737752 0.4418495 0.3441616 0.1885070
## [2,] 0.9667525 0.5033069 0.7688742 0.9638062
## [3,] 0.6217220 0.9174334 0.1310715 0.9085918
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.6208025 0.2682217 0.1083691 0.6678025
## [2,] 0.4860814 0.8287540 0.7625201 0.5540407
## [3,] 0.5504597 0.4530179 0.2181907 0.7525746
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.69423519 0.80871713 0.28943829 0.54541677
## [2,] 0.10630253 0.97752589 0.05488169 0.79289853
## [3,] 0.84572561 0.64364436 0.85485394 0.02275462
We can also extract the diagonal elements as follows.
einsum::einsum('ii->i', arrB)
## [1] 0.9877677 0.2391816 0.5983478
DelayedTensor::einsum('ii->i', darrB)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.9877677 0.2391816 0.5983478
einsum::einsum('iii->i', arrD)
## [1] 0.1701862 0.2919543 0.1221751
DelayedTensor::einsum('iii->i', darrD)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.1701862 0.2919543 0.1221751
By using multiple arrays or DelayedArray objects as input and writing “,” on the right side of ->, multiplication will be performed.
Hadamard Product can also be implemented in einsum
,
multiplying by the product of each element.
einsum::einsum('i,i->i', arrA, arrA)
## [1] 0.33476257 0.04310246 0.32096546
DelayedTensor::einsum('i,i->i', darrA, darrA)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.33476257 0.04310246 0.32096546
einsum::einsum('ij,ij->ij', arrC, arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.002904961 0.09761232 0.15714152 0.001248763
## [2,] 0.204162273 0.05375536 0.32223896 0.019461028
## [3,] 0.651039385 0.02517817 0.03206219 0.943704899
DelayedTensor::einsum('ij,ij->ij', darrC, darrC)
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.002904961 0.097612319 0.157141516 0.001248763
## [2,] 0.204162273 0.053755364 0.322238956 0.019461028
## [3,] 0.651039385 0.025178172 0.032062195 0.943704899
einsum::einsum('ijk,ijk->ijk', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.93843271 0.01485504 0.705568684 0.5996748
## [2,] 0.49710614 0.12288967 0.187346535 0.4897131
## [3,] 0.01156643 0.17334489 0.008489066 0.1564913
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.3400208 0.135979337 4.555041e-02 0.856234685
## [2,] 0.1186677 0.890021044 5.394646e-05 0.101662316
## [3,] 0.7769967 0.006419624 8.749685e-03 0.003134904
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07495286 0.1952309 0.11844719 0.03553491
## [2,] 0.93461045 0.2533178 0.59116746 0.92892241
## [3,] 0.38653825 0.8416840 0.01717973 0.82553899
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.3853957 0.07194288 0.01174385 0.4459602
## [2,] 0.2362752 0.68683314 0.58143689 0.3069611
## [3,] 0.3030058 0.20522524 0.04760720 0.5663685
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.48196251 0.6540234 0.08377452 0.2974794497
## [2,] 0.01130023 0.9555569 0.00301200 0.6286880725
## [3,] 0.71525180 0.4142781 0.73077525 0.0005177727
DelayedTensor::einsum('ijk,ijk->ijk', darrE, darrE)
## <3 x 4 x 5> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.938432711 0.014855044 0.705568684 0.599674849
## [2,] 0.497106140 0.122889667 0.187346535 0.489713074
## [3,] 0.011566434 0.173344890 0.008489066 0.156491342
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 3.400208e-01 1.359793e-01 4.555041e-02 8.562347e-01
## [2,] 1.186677e-01 8.900210e-01 5.394646e-05 1.016623e-01
## [3,] 7.769967e-01 6.419624e-03 8.749685e-03 3.134904e-03
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.07495286 0.19523095 0.11844719 0.03553491
## [2,] 0.93461045 0.25331784 0.59116746 0.92892241
## [3,] 0.38653825 0.84168398 0.01717973 0.82553899
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.38539569 0.07194288 0.01174385 0.44596024
## [2,] 0.23627517 0.68683314 0.58143689 0.30696110
## [3,] 0.30300584 0.20522524 0.04760720 0.56636851
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.4819625052 0.6540233926 0.0837745242 0.2974794497
## [2,] 0.0113002287 0.9555568636 0.0030119998 0.6286880725
## [3,] 0.7152517994 0.4142780611 0.7307752507 0.0005177727
The outer product can also be implemented in einsum
,
in which the subscripts in the input array are all different,
and all of them are kept.
einsum::einsum('i,j->ij', arrA, arrA)
## [,1] [,2] [,3]
## [1,] 0.3347626 0.12012115 0.3277914
## [2,] 0.1201211 0.04310246 0.1176197
## [3,] 0.3277914 0.11761973 0.3209655
DelayedTensor::einsum('i,j->ij', darrA, darrA)
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.33476257 0.12012115 0.32779143
## [2,] 0.12012115 0.04310246 0.11761973
## [3,] 0.32779143 0.11761973 0.32096546
einsum::einsum('ij,klm->ijklm', arrC, arrE)
## , , 1, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05221217 0.3026592 0.3840140 0.03423274
## [2,] 0.43771287 0.2246014 0.5499087 0.13514017
## [3,] 0.78163716 0.1537141 0.1734595 0.94106511
##
## , , 2, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03800098 0.2202809 0.2794924 0.02491521
## [2,] 0.31857545 0.1634690 0.4002336 0.09835749
## [3,] 0.56888986 0.1118759 0.1262470 0.68492445
##
## , , 3, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.005796555 0.03360099 0.04263293 0.003800492
## [2,] 0.048594542 0.02493507 0.06105044 0.015003157
## [3,] 0.086776750 0.01706522 0.01925734 0.104476317
##
## , , 1, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.006569119 0.03807933 0.04831505 0.004307021
## [2,] 0.055071223 0.02825842 0.06918724 0.017002777
## [3,] 0.098342355 0.01933967 0.02182396 0.118400921
##
## , , 2, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01889417 0.10952418 0.13896427 0.01238790
## [2,] 0.15839645 0.08127717 0.19899708 0.04890357
## [3,] 0.28285334 0.05562497 0.06277031 0.34054600
##
## , , 3, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02244015 0.13007919 0.16504447 0.01471281
## [2,] 0.18812359 0.09653092 0.23634398 0.05808158
## [3,] 0.33593802 0.06606442 0.07455077 0.40445818
##
## , , 1, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04527306 0.2624351 0.3329777 0.02968313
## [2,] 0.37953986 0.1947514 0.4768246 0.11717974
## [3,] 0.67775586 0.1332851 0.1504064 0.81599548
##
## , , 2, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02332883 0.13523065 0.17158065 0.01529547
## [2,] 0.19557376 0.10035378 0.24570379 0.06038175
## [3,] 0.34924200 0.06868073 0.07750317 0.42047573
##
## , , 3, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.004965925 0.02878606 0.03652376 0.003255892
## [2,] 0.041631082 0.02136195 0.05230208 0.012853247
## [3,] 0.074341888 0.01461982 0.01649782 0.089505158
##
## , , 1, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04173766 0.2419414 0.3069753 0.02736516
## [2,] 0.34990139 0.1795431 0.4395891 0.10802911
## [3,] 0.62482953 0.1228768 0.1386611 0.75227395
##
## , , 2, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03771734 0.2186368 0.2774063 0.02472925
## [2,] 0.31619762 0.1622489 0.3972463 0.09762336
## [3,] 0.56464369 0.1110409 0.1253047 0.67981220
##
## , , 3, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02132138 0.12359402 0.1568161 0.01397929
## [2,] 0.17874459 0.09171831 0.2245609 0.05518589
## [3,] 0.31918964 0.06277074 0.0708340 0.38429370
##
## , , 1, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03142845 0.18218182 0.2311523 0.02060596
## [2,] 0.26347565 0.13519594 0.3310105 0.08134589
## [3,] 0.47049646 0.09252622 0.1044117 0.56646207
##
## , , 2, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01856677 0.1076263 0.13655630 0.01217324
## [2,] 0.15565176 0.0798688 0.19554887 0.04805617
## [3,] 0.27795207 0.0546611 0.06168263 0.33464503
##
## , , 3, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04750942 0.2753987 0.3494259 0.0311494
## [2,] 0.39828809 0.2043716 0.5003785 0.1229681
## [3,] 0.71123514 0.1398691 0.1578360 0.8563034
##
## , , 1, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01987498 0.11520963 0.14617797 0.01303096
## [2,] 0.16661888 0.08549631 0.20932711 0.05144218
## [3,] 0.29753639 0.05851249 0.06602875 0.35822391
##
## , , 2, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05084758 0.2947491 0.3739776 0.03333805
## [2,] 0.42627306 0.2187314 0.5355366 0.13160822
## [3,] 0.76120874 0.1496967 0.1689261 0.91646998
##
## , , 3, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.004318421 0.02503267 0.03176145 0.002831358
## [2,] 0.036202831 0.01857658 0.04548245 0.011177320
## [3,] 0.064648495 0.01271355 0.01434668 0.077834635
##
## , , 1, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01150314 0.06668044 0.08460414 0.007541994
## [2,] 0.09643482 0.04948312 0.12115327 0.029773440
## [3,] 0.17220659 0.03386556 0.03821578 0.207330997
##
## , , 2, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0003958691 0.002294742 0.002911568 0.0002595503
## [2,] 0.0033187093 0.001702913 0.004169370 0.0010246236
## [3,] 0.0059263200 0.001165450 0.001315158 0.0071350919
##
## , , 3, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.005041577 0.02922460 0.03708017 0.003305493
## [2,] 0.042265299 0.02168738 0.05309886 0.013049056
## [3,] 0.075474428 0.01484254 0.01674915 0.090868698
##
## , , 1, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04987313 0.2891004 0.3668106 0.03269915
## [2,] 0.41810384 0.2145395 0.5252734 0.12908605
## [3,] 0.74662072 0.1468279 0.1656888 0.89890648
##
## , , 2, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01718503 0.09961674 0.12639371 0.01126731
## [2,] 0.14406807 0.07392493 0.18099602 0.04447981
## [3,] 0.25726673 0.05059319 0.05709218 0.30974058
##
## , , 3, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.003017744 0.017493007 0.02219513 0.001978574
## [2,] 0.025298799 0.012981446 0.03178346 0.007810791
## [3,] 0.045176833 0.008884321 0.01002556 0.054391403
##
## , , 1, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01475585 0.08553550 0.10852744 0.009674626
## [2,] 0.12370346 0.06347534 0.15541149 0.038192404
## [3,] 0.22090103 0.04344164 0.04902197 0.265957479
##
## , , 2, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05210573 0.3020422 0.3832311 0.03416295
## [2,] 0.43682055 0.2241435 0.5487877 0.13486467
## [3,] 0.78004372 0.1534007 0.1731059 0.93914667
##
## , , 3, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03350938 0.19424442 0.2464573 0.02197032
## [2,] 0.28092086 0.14414751 0.3529273 0.08673195
## [3,] 0.50164890 0.09865255 0.1113250 0.60396857
##
## , , 1, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02381467 0.13804690 0.17515390 0.01561401
## [2,] 0.19964667 0.10244370 0.25082069 0.06163923
## [3,] 0.35651513 0.07011104 0.07911721 0.42923234
##
## , , 2, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02712708 0.15724803 0.19951629 0.01778578
## [2,] 0.22741580 0.11669273 0.28570768 0.07021272
## [3,] 0.40610330 0.07986288 0.09012173 0.48893485
##
## , , 3, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04944754 0.2866334 0.3636805 0.03242012
## [2,] 0.41453602 0.2127088 0.5207911 0.12798451
## [3,] 0.74024957 0.1455749 0.1642749 0.89123582
##
## , , 1, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01854952 0.10752630 0.1364294 0.01216193
## [2,] 0.15550707 0.07979456 0.1953671 0.04801150
## [3,] 0.27769370 0.05461029 0.0616253 0.33433396
##
## , , 2, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04144054 0.2402191 0.3047900 0.02717036
## [2,] 0.34741055 0.1782650 0.4364598 0.10726009
## [3,] 0.62038158 0.1220021 0.1376740 0.74691876
##
## , , 3, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.00706445 0.04095062 0.05195814 0.004631783
## [2,] 0.05922375 0.03038919 0.07440415 0.018284835
## [3,] 0.10575765 0.02079794 0.02346955 0.127328688
##
## , , 1, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01016009 0.05889520 0.07472623 0.006661433
## [2,] 0.08517563 0.04370574 0.10700809 0.026297259
## [3,] 0.15210070 0.02991160 0.03375392 0.183124180
##
## , , 2, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05194693 0.3011217 0.3820632 0.03405883
## [2,] 0.43548928 0.2234604 0.5471152 0.13445365
## [3,] 0.77766643 0.1529332 0.1725784 0.93628448
##
## , , 3, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0489710 0.2838711 0.3601756 0.03210767
## [2,] 0.4105410 0.2106588 0.5157721 0.12675108
## [3,] 0.7331155 0.1441720 0.1626917 0.88264669
##
## , , 1, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03345982 0.19395713 0.2460928 0.02193782
## [2,] 0.28050537 0.14393431 0.3524053 0.08660367
## [3,] 0.50090695 0.09850664 0.1111604 0.60307529
##
## , , 2, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02619867 0.15186628 0.19268793 0.01717707
## [2,] 0.21963259 0.11269897 0.27592946 0.06780972
## [3,] 0.39220459 0.07712961 0.08703735 0.47220127
##
## , , 3, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02966851 0.17197995 0.21820815 0.01945206
## [2,] 0.24872145 0.12762519 0.31247446 0.07679066
## [3,] 0.44414945 0.08734491 0.09856486 0.53474115
##
## , , 1, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01445653 0.08380042 0.10632597 0.009478377
## [2,] 0.12119415 0.06218775 0.15225898 0.037417674
## [3,] 0.21642007 0.04256043 0.04802756 0.260562558
##
## , , 2, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04466793 0.2589274 0.3285270 0.02928638
## [2,] 0.37446684 0.1921483 0.4704513 0.11561349
## [3,] 0.66869681 0.1315036 0.1483960 0.80508869
##
## , , 3, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02441662 0.14153625 0.17958119 0.01600868
## [2,] 0.20469306 0.10503313 0.25716058 0.06319726
## [3,] 0.36552662 0.07188321 0.08111702 0.44008188
##
## , , 1, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.005840843 0.03385772 0.04295867 0.003829529
## [2,] 0.048965825 0.02512559 0.06151689 0.015117787
## [3,] 0.087439761 0.01719560 0.01940448 0.105274561
##
## , , 2, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04109807 0.2382339 0.3022712 0.02694582
## [2,] 0.34453951 0.1767918 0.4328529 0.10637368
## [3,] 0.61525468 0.1209939 0.1365362 0.74074614
##
## , , 3, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01175998 0.06816927 0.08649317 0.007710391
## [2,] 0.09858800 0.05058797 0.12385836 0.030438217
## [3,] 0.17605159 0.03462170 0.03906906 0.211960251
##
## , , 1, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03599302 0.2086414 0.2647241 0.02359870
## [2,] 0.30174203 0.1548314 0.3790854 0.09316032
## [3,] 0.53882992 0.1059644 0.1195762 0.64873327
##
## , , 2, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02986152 0.17309877 0.21962772 0.01957860
## [2,] 0.25033952 0.12845546 0.31450727 0.07729022
## [3,] 0.44703889 0.08791314 0.09920608 0.53821993
##
## , , 3, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04056203 0.2351267 0.2983287 0.02659436
## [2,] 0.34004571 0.1744859 0.4272072 0.10498625
## [3,] 0.60722995 0.1194158 0.1347554 0.73108463
##
## , , 1, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03741768 0.2168997 0.2752023 0.02453278
## [2,] 0.31368545 0.1609598 0.3940902 0.09684775
## [3,] 0.56015763 0.1101587 0.1243092 0.67441113
##
## , , 2, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.005729461 0.03321207 0.04213947 0.003756502
## [2,] 0.048032077 0.02464646 0.06034380 0.014829500
## [3,] 0.085772338 0.01686769 0.01903445 0.103267038
##
## , , 3, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04558266 0.2642298 0.3352548 0.02988612
## [2,] 0.38213536 0.1960832 0.4800854 0.11798108
## [3,] 0.68239072 0.1341966 0.1514349 0.82157570
##
## , , 1, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04358799 0.2526673 0.3205842 0.02857832
## [2,] 0.36541333 0.1875027 0.4590771 0.11281829
## [3,] 0.65252968 0.1283243 0.1448082 0.78562401
##
## , , 2, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05268639 0.3054081 0.3875018 0.03454366
## [2,] 0.44168842 0.2266414 0.5549033 0.13636759
## [3,] 0.78873643 0.1551102 0.1750350 0.94961239
##
## , , 3, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03469095 0.2010936 0.2551476 0.02274500
## [2,] 0.29082632 0.1492303 0.3653718 0.08979018
## [3,] 0.51933740 0.1021311 0.1152504 0.62526493
##
## , , 1, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01560006 0.09042912 0.11473646 0.01022813
## [2,] 0.13078072 0.06710686 0.16430282 0.04037745
## [3,] 0.23353911 0.04592700 0.05182659 0.28117331
##
## , , 2, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.002957996 0.017146670 0.021755694 0.001939401
## [2,] 0.024797918 0.012724431 0.031154192 0.007656149
## [3,] 0.044282395 0.008708424 0.009827071 0.053314528
##
## , , 3, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04607466 0.2670818 0.3388733 0.0302087
## [2,] 0.38625993 0.1981996 0.4852672 0.1192545
## [3,] 0.68975609 0.1356451 0.1530695 0.8304434
##
## , , 1, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02939671 0.17040440 0.21620909 0.01927385
## [2,] 0.24644285 0.12645599 0.30961180 0.07608716
## [3,] 0.44008049 0.08654472 0.09766189 0.52984225
##
## , , 2, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0427354 0.2477251 0.3143135 0.02801933
## [2,] 0.3582658 0.1838351 0.4500975 0.11061156
## [3,] 0.6397661 0.1258142 0.1419758 0.77025711
##
## , , 3, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.001226421 0.007109219 0.009020176 0.0008040992
## [2,] 0.010281520 0.005275705 0.012916908 0.0031743328
## [3,] 0.018360022 0.003610619 0.004074424 0.0221048548
DelayedTensor::einsum('ij,klm->ijklm', darrC, darrE)
## <3 x 4 x 3 x 4 x 5> HDF5Array object of type "double":
## ,,1,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.05221217 0.30265920 0.38401398 0.03423274
## [2,] 0.43771287 0.22460141 0.54990870 0.13514017
## [3,] 0.78163716 0.15371409 0.17345954 0.94106511
##
## ,,2,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.03800098 0.22028092 0.27949242 0.02491521
## [2,] 0.31857545 0.16346902 0.40023364 0.09835749
## [3,] 0.56888986 0.11187593 0.12624703 0.68492445
##
## ,,3,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.005796555 0.033600990 0.042632934 0.003800492
## [2,] 0.048594542 0.024935074 0.061050436 0.015003157
## [3,] 0.086776750 0.017065218 0.019257343 0.104476317
##
## ...
##
## ,,1,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.02939671 0.17040440 0.21620909 0.01927385
## [2,] 0.24644285 0.12645599 0.30961180 0.07608716
## [3,] 0.44008049 0.08654472 0.09766189 0.52984225
##
## ,,2,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.04273540 0.24772505 0.31431353 0.02801933
## [2,] 0.35826580 0.18383513 0.45009753 0.11061156
## [3,] 0.63976613 0.12581421 0.14197577 0.77025711
##
## ,,3,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.0012264215 0.0071092188 0.0090201764 0.0008040992
## [2,] 0.0102815196 0.0052757046 0.0129169085 0.0031743328
## [3,] 0.0183600218 0.0036106190 0.0040744237 0.0221048548
If there is a vanishing subscript on the left or right side of ->, the summation is done for that subscript.
einsum::einsum('i->', arrA)
## [1] 1.352736
DelayedTensor::einsum('i->', darrA)
## <1> HDF5Array object of type "double":
## [1]
## 1.352736
einsum::einsum('ij->', arrC)
## [1] 4.304985
DelayedTensor::einsum('ij->', darrC)
## <1> HDF5Array object of type "double":
## [1]
## 4.304985
einsum::einsum('ijk->', arrE)
## [1] 30.65775
DelayedTensor::einsum('ijk->', darrE)
## <1> HDF5Array object of type "double":
## [1]
## 30.65775
einsum::einsum('ij->i', arrC)
## [1] 0.798076 1.390859 2.116050
DelayedTensor::einsum('ij->i', darrC)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 0.798076 1.390859 2.116050
einsum::einsum('ij->j', arrC)
## [1] 1.312611 0.702958 1.143131 1.146285
DelayedTensor::einsum('ij->j', darrC)
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 1.312611 0.702958 1.143131 1.146285
einsum::einsum('ijk->i', arrE)
## [1] 10.046895 11.568070 9.042787
DelayedTensor::einsum('ijk->i', darrE)
## <3> HDF5Array object of type "double":
## [1] [2] [3]
## 10.046895 11.568070 9.042787
einsum::einsum('ijk->j', arrE)
## [1] 8.756258 8.123541 5.211624 8.566329
DelayedTensor::einsum('ijk->j', darrE)
## <4> HDF5Array object of type "double":
## [1] [2] [3] [4]
## 8.756258 8.123541 5.211624 8.566329
einsum::einsum('ijk->k', arrE)
## [1] 5.904841 4.815830 7.029852 6.270835 6.636395
DelayedTensor::einsum('ijk->k', darrE)
## <5> HDF5Array object of type "double":
## [1] [2] [3] [4] [5]
## 5.904841 4.815830 7.029852 6.270835 6.636395
These are the same as what the modeSum
function does.
einsum::einsum('ijk->ij', arrE)
## [,1] [,2] [,3] [,4]
## [1,] 3.140653 2.009423 1.795376 3.101443
## [2,] 2.608676 3.603552 2.026456 3.329386
## [3,] 3.006929 2.510565 1.389792 2.135501
DelayedTensor::einsum('ijk->ij', darrE)
## <3 x 4> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4]
## [1,] 3.140653 2.009423 1.795376 3.101443
## [2,] 2.608676 3.603552 2.026456 3.329386
## [3,] 3.006929 2.510565 1.389792 2.135501
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.7813323 1.809069 1.862250 1.657344 1.646263
## [2,] 0.8887846 1.392286 1.862590 1.549994 2.429887
## [3,] 1.3649529 0.314310 1.244107 1.089080 1.199174
## [4,] 1.8697716 1.300165 2.060905 1.974418 1.361070
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.7813323 1.8090690 1.8622497 1.6573436 1.6462633
## [2,] 0.8887846 1.3922856 1.8625897 1.5499936 2.4298874
## [3,] 1.3649529 0.3143100 1.2441072 1.0890799 1.1991739
## [4,] 1.8697716 1.3001650 2.0609050 1.9744178 1.3610699
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.7813323 1.809069 1.862250 1.657344 1.646263
## [2,] 0.8887846 1.392286 1.862590 1.549994 2.429887
## [3,] 1.3649529 0.314310 1.244107 1.089080 1.199174
## [4,] 1.8697716 1.300165 2.060905 1.974418 1.361070
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.7813323 1.8090690 1.8622497 1.6573436 1.6462633
## [2,] 0.8887846 1.3922856 1.8625897 1.5499936 2.4298874
## [3,] 1.3649529 0.3143100 1.2441072 1.0890799 1.1991739
## [4,] 1.8697716 1.3001650 2.0609050 1.9744178 1.3610699
If we take the diagonal elements of a matrix
and add them together, we get trace
.
einsum::einsum('ii->', arrB)
## [1] 1.825297
DelayedTensor::einsum('ii->', darrB)
## <1> HDF5Array object of type "double":
## [1]
## 1.825297
By changing the order of the indices on the left and right side of ->, we can get a sorted array or DelayedArray.
einsum::einsum('ij->ji', arrB)
## [,1] [,2] [,3]
## [1,] 0.9877677 0.01029162 0.1245146
## [2,] 0.1562359 0.23918162 0.2348336
## [3,] 0.2610605 0.41233991 0.5983478
DelayedTensor::einsum('ij->ji', darrB)
## <3 x 3> DelayedArray object of type "double":
## [,1] [,2] [,3]
## [1,] 0.98776774 0.01029162 0.12451460
## [2,] 0.15623589 0.23918162 0.23483357
## [3,] 0.26106050 0.41233991 0.59834779
einsum::einsum('ijk->jki', arrD)
## , , 1
##
## [,1] [,2] [,3]
## [1,] 0.1701862 0.3770715 0.70118656
## [2,] 0.5464314 0.2476802 0.05040287
## [3,] 0.9360206 0.8680640 0.42246223
##
## , , 2
##
## [,1] [,2] [,3]
## [1,] 0.58311678 0.9694385 0.5898792
## [2,] 0.38972621 0.2919543 0.3158753
## [3,] 0.08887588 0.1741818 0.1989646
##
## , , 3
##
## [,1] [,2] [,3]
## [1,] 0.1987036 0.8417214 0.095208058
## [2,] 0.5466009 0.6746026 0.005617083
## [3,] 0.2231422 0.7677760 0.122175079
DelayedTensor::einsum('ijk->jki', darrD)
## <3 x 3 x 3> DelayedArray object of type "double":
## ,,1
## [,1] [,2] [,3]
## [1,] 0.17018616 0.37707149 0.70118656
## [2,] 0.54643144 0.24768021 0.05040287
## [3,] 0.93602061 0.86806403 0.42246223
##
## ,,2
## [,1] [,2] [,3]
## [1,] 0.58311678 0.96943855 0.58987916
## [2,] 0.38972621 0.29195428 0.31587526
## [3,] 0.08887588 0.17418184 0.19896460
##
## ,,3
## [,1] [,2] [,3]
## [1,] 0.198703590 0.841721351 0.095208058
## [2,] 0.546600928 0.674602573 0.005617083
## [3,] 0.223142179 0.767776028 0.122175079
Some examples of combining Multiplication and Summation are shown below.
Inner Product first calculate Hadamard Product and collapses it to 0D tensor (norm).
einsum::einsum('i,i->', arrA, arrA)
## [1] 0.6988305
DelayedTensor::einsum('i,i->', darrA, darrA)
## <1> HDF5Array object of type "double":
## [1]
## 0.6988305
einsum::einsum('ij,ij->', arrC, arrC)
## [1] 2.51051
DelayedTensor::einsum('ij,ij->', darrC, darrC)
## <1> HDF5Array object of type "double":
## [1]
## 2.51051
einsum::einsum('ijk,ijk->', arrE, arrE)
## [1] 21.21747
DelayedTensor::einsum('ijk,ijk->', darrE, darrE)
## <1> HDF5Array object of type "double":
## [1]
## 21.21747
The inner product is an operation that eliminates all subscripts, while the outer product is an operation that leaves all subscripts intact. In the middle of the two, the operation that eliminates some subscripts while keeping others by summing them is called contracted product.
einsum::einsum('ijk,ijk->jk', arrE, arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.4471053 1.23568515 1.3961016 0.9246767 1.2085145
## [2,] 0.3110896 1.03242000 1.2902328 0.9640013 2.0238583
## [3,] 0.9014043 0.05435404 0.7267944 0.6407879 0.8175618
## [4,] 1.2458793 0.96103191 1.7899963 1.3192899 0.9266853
DelayedTensor::einsum('ijk,ijk->jk', darrE, darrE)
## <4 x 5> HDF5Matrix object of type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.44710529 1.23568515 1.39610156 0.92467670 1.20851453
## [2,] 0.31108960 1.03242000 1.29023277 0.96400125 2.02385832
## [3,] 0.90140428 0.05435404 0.72679439 0.64078795 0.81756177
## [4,] 1.24587926 0.96103191 1.78999631 1.31928985 0.92668529
Matrix Multiplication is considered a contracted product.
einsum::einsum('ij,jk->ik', arrC, t(arrC))
## [,1] [,2] [,3]
## [1,] 0.2589076 0.3267474 0.1983734
## [2,] 0.3267474 0.5996176 0.6385324
## [3,] 0.1983734 0.6385324 1.6519847
DelayedTensor::einsum('ij,jk->ik', darrC, t(darrC))
## <3 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.2589076 0.3267474 0.1983734
## [2,] 0.3267474 0.5996176 0.6385324
## [3,] 0.1983734 0.6385324 1.6519847
Some examples of combining Multiplication and Permutation are shown below.
einsum::einsum('ij,ij->ji', arrC, arrC)
## [,1] [,2] [,3]
## [1,] 0.002904961 0.20416227 0.65103938
## [2,] 0.097612319 0.05375536 0.02517817
## [3,] 0.157141516 0.32223896 0.03206219
## [4,] 0.001248763 0.01946103 0.94370490
DelayedTensor::einsum('ij,ij->ji', darrC, darrC)
## <4 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 0.002904961 0.204162273 0.651039385
## [2,] 0.097612319 0.053755364 0.025178172
## [3,] 0.157141516 0.322238956 0.032062195
## [4,] 0.001248763 0.019461028 0.943704899
einsum::einsum('ijk,ijk->jki', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.93843271 0.34002078 0.07495286 0.38539569 0.48196251
## [2,] 0.01485504 0.13597934 0.19523095 0.07194288 0.65402339
## [3,] 0.70556868 0.04555041 0.11844719 0.01174385 0.08377452
## [4,] 0.59967485 0.85623468 0.03553491 0.44596024 0.29747945
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.4971061 1.186677e-01 0.9346104 0.2362752 0.01130023
## [2,] 0.1228897 8.900210e-01 0.2533178 0.6868331 0.95555686
## [3,] 0.1873465 5.394646e-05 0.5911675 0.5814369 0.00301200
## [4,] 0.4897131 1.016623e-01 0.9289224 0.3069611 0.62868807
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.011566434 0.776996663 0.38653825 0.3030058 0.7152517994
## [2,] 0.173344890 0.006419624 0.84168398 0.2052252 0.4142780611
## [3,] 0.008489066 0.008749685 0.01717973 0.0476072 0.7307752507
## [4,] 0.156491342 0.003134904 0.82553899 0.5663685 0.0005177727
DelayedTensor::einsum('ijk,ijk->jki', darrE, darrE)
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.93843271 0.34002078 0.07495286 0.38539569 0.48196251
## [2,] 0.01485504 0.13597934 0.19523095 0.07194288 0.65402339
## [3,] 0.70556868 0.04555041 0.11844719 0.01174385 0.08377452
## [4,] 0.59967485 0.85623468 0.03553491 0.44596024 0.29747945
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4.971061e-01 1.186677e-01 9.346104e-01 2.362752e-01 1.130023e-02
## [2,] 1.228897e-01 8.900210e-01 2.533178e-01 6.868331e-01 9.555569e-01
## [3,] 1.873465e-01 5.394646e-05 5.911675e-01 5.814369e-01 3.012000e-03
## [4,] 4.897131e-01 1.016623e-01 9.289224e-01 3.069611e-01 6.286881e-01
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0115664345 0.7769966625 0.3865382487 0.3030058431 0.7152517994
## [2,] 0.1733448896 0.0064196238 0.8416839797 0.2052252367 0.4142780611
## [3,] 0.0084890661 0.0087496846 0.0171797293 0.0476072002 0.7307752507
## [4,] 0.1564913417 0.0031349044 0.8255389882 0.5663685108 0.0005177727
Some examples of combining Summation and Permutation are shown below.
einsum::einsum('ijk->ki', arrE)
## [,1] [,2] [,3]
## [1,] 2.704977 2.188244 1.011620
## [2,] 2.090622 1.614081 1.111127
## [3,] 1.248293 3.202740 2.578819
## [4,] 1.665196 2.631396 1.974243
## [5,] 2.337807 1.931609 2.366979
DelayedTensor::einsum('ijk->ki', darrE)
## <5 x 3> HDF5Matrix object of type "double":
## [,1] [,2] [,3]
## [1,] 2.704977 2.188244 1.011620
## [2,] 2.090622 1.614081 1.111127
## [3,] 1.248293 3.202740 2.578819
## [4,] 1.665196 2.631396 1.974243
## [5,] 2.337807 1.931609 2.366979
Finally, we will show a more complex example, combining Multiplication, Summation, and Permutation.
einsum::einsum('i,ij,ijk,ijk,ji->jki',
arrA, arrC, arrE, arrE, t(arrC))
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0015772914 0.0005714974 0.0001259787 0.0006477623 0.0008100691
## [2,] 0.0008389712 0.0076797308 0.0110260953 0.0040631316 0.0369374032
## [3,] 0.0641502984 0.0041414426 0.0107692178 0.0010677512 0.0076167790
## [4,] 0.0004332758 0.0006186448 0.0000256746 0.0003222142 0.0002149342
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.021070539 5.029897e-03 0.039614772 0.010014854 0.0004789760
## [2,] 0.001371476 9.932833e-03 0.002827083 0.007665210 0.0106642270
## [3,] 0.012533569 3.609043e-06 0.039549373 0.038898393 0.0002015042
## [4,] 0.001978602 4.107493e-04 0.003753153 0.001240224 0.0025401071
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0042661480 2.865864e-01 0.1425702423 0.1117602634 0.2638125017
## [2,] 0.0024726599 9.157205e-05 0.0120061124 0.0029274138 0.0059094257
## [3,] 0.0001541993 1.589333e-04 0.0003120604 0.0008647589 0.0132741349
## [4,] 0.0836672847 1.676060e-03 0.4413701410 0.3028059886 0.0002768245
DelayedTensor::einsum('i,ij,ijk,ijk,ji->jki',
darrA, darrC, darrE, darrE, t(darrC))
## <4 x 5 x 3> HDF5Array object of type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0015772914 0.0005714974 0.0001259787 0.0006477623 0.0008100691
## [2,] 0.0008389712 0.0076797308 0.0110260953 0.0040631316 0.0369374032
## [3,] 0.0641502984 0.0041414426 0.0107692178 0.0010677512 0.0076167790
## [4,] 0.0004332758 0.0006186448 0.0000256746 0.0003222142 0.0002149342
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 2.107054e-02 5.029897e-03 3.961477e-02 1.001485e-02 4.789760e-04
## [2,] 1.371476e-03 9.932833e-03 2.827083e-03 7.665210e-03 1.066423e-02
## [3,] 1.253357e-02 3.609043e-06 3.954937e-02 3.889839e-02 2.015042e-04
## [4,] 1.978602e-03 4.107493e-04 3.753153e-03 1.240224e-03 2.540107e-03
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4.266148e-03 2.865864e-01 1.425702e-01 1.117603e-01 2.638125e-01
## [2,] 2.472660e-03 9.157205e-05 1.200611e-02 2.927414e-03 5.909426e-03
## [3,] 1.541993e-04 1.589333e-04 3.120604e-04 8.647589e-04 1.327413e-02
## [4,] 8.366728e-02 1.676060e-03 4.413701e-01 3.028060e-01 2.768245e-04
einsum
By using einsum
and other DelayedTensor functions,
it is possible to implement your original tensor calculation functions.
It is intended to be applied to Delayed Arrays,
which can scale to large-scale data
since the calculation is performed internally by block processing.
For example, kronecker
can be easily implmented by eimsum
and other DelayedTensor functions4 https://stackoverflow.com/
questions/56067643/speeding-up-kronecker-products-numpy
(the kronecker
function inside DelayedTensor
has a more efficient implementation though).
darr1 <- DelayedArray(array(1:6, dim=c(2,3)))
darr2 <- DelayedArray(array(20:1, dim=c(4,5)))
mykronecker <- function(darr1, darr2){
stopifnot((length(dim(darr1)) == 2) && (length(dim(darr2)) == 2))
# Outer Product
tmpdarr <- DelayedTensor::einsum('ij,kl->ikjl', darr1, darr2)
# Reshape
DelayedTensor::unfold(tmpdarr, row_idx=c(2,1), col_idx=c(4,3))
}
identical(as.array(DelayedTensor::kronecker(darr1, darr2)),
as.array(mykronecker(darr1, darr2)))
## [1] TRUE
## R version 4.4.1 (2024-06-14 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows Server 2022 x64 (build 20348)
##
## Matrix products: default
##
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] einsum_0.1.2 DelayedRandomArray_1.14.0
## [3] HDF5Array_1.34.0 rhdf5_2.50.0
## [5] DelayedArray_0.32.0 SparseArray_1.6.0
## [7] S4Arrays_1.6.0 abind_1.4-8
## [9] IRanges_2.40.0 S4Vectors_0.44.0
## [11] MatrixGenerics_1.18.0 matrixStats_1.4.1
## [13] BiocGenerics_0.52.0 Matrix_1.7-1
## [15] DelayedTensor_1.12.0 BiocStyle_2.34.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_1.8.9 compiler_4.4.1 BiocManager_1.30.25
## [4] crayon_1.5.3 rsvd_1.0.5 Rcpp_1.0.13
## [7] rhdf5filters_1.18.0 parallel_4.4.1 jquerylib_0.1.4
## [10] BiocParallel_1.40.0 yaml_2.3.10 fastmap_1.2.0
## [13] lattice_0.22-6 R6_2.5.1 XVector_0.46.0
## [16] ScaledMatrix_1.14.0 knitr_1.48 bookdown_0.41
## [19] bslib_0.8.0 rlang_1.1.4 cachem_1.1.0
## [22] xfun_0.48 sass_0.4.9 cli_3.6.3
## [25] Rhdf5lib_1.28.0 BiocSingular_1.22.0 zlibbioc_1.52.0
## [28] digest_0.6.37 grid_4.4.1 irlba_2.3.5.1
## [31] rTensor_1.4.8 dqrng_0.4.1 lifecycle_1.0.4
## [34] evaluate_1.0.1 codetools_0.2-20 beachmat_2.22.0
## [37] rmarkdown_2.28 tools_4.4.1 htmltools_0.5.8.1