
Gene set enrichment analysis with topGO

Adrian Alexa, Jörg Rahnenführer

May 3, 2008
http://www.mpi-sb.mpg.de/∼alexa

1

Contents

1 Introduction 3

2 Preprocessing 3

3 Sample session 4

3.1 Deciding on the test . 4

3.2 Setting the annotations . 4

3.3 Running an algorithm . 4

3.4 Looking at the results . 4

4 Creating a topGOdata object 4

4.1 Predefined list of interesting genes . 4

4.2 Using the genes score . 5

5 Working with the topGOdata object 7

6 The GO analysis 8

6.1 High-level interface . 8

7 Session Information 11

References 14

1 Introduction

The result of a microarray experiment is a list of genes with corresponding expression profiles. Such a gene list is
the starting point for an investigation of the biology manifested by the experimental data. Often, genes are ranked
according to differential expression between disease groups or according to correlation of expression values with a
phenotype measurement. The result of such an analysis is an ordered list of genes.

Methods that test for enrichment of GO terms have been proposed by [Draghici et al., 2003], [Zeeberg, B. R., et al., 2003]
and [Al-Shahrour, F., et al., 2004]. A comparative study of commonly used tools for analyzing GO term enrichment
was recently presented by [Khatri and Draghici, 2005]. None of the methods compared in this study integrates the
knowledge encapsulated in the hierarchical structure of the GO database. Recently [Grossmann et al., 2006] dis-
cussed scoring enrichment of GO terms in a local sense. The over-representation of a GO term is quantified with
respect to its direct less specific neighbors in the GO hierarchy. In the present paper we propose algorithms that
identify over-represented terms in a more global sense, integrating the whole GO topology in the score.

Several other methods integrating the hierarchical structure of the GO have related but different goals. [Balasubramanian et al., 2004]
test the association between multiple sources of functional genomics data. Each data source is represented by a
single graph with nodes representing genes and with edges representing functional links. For a group of genes a
graph based on GO is obtained by placing edges between all gene pairs that are annotated to GO terms with a
small distance in GO graph topology. The proposed tests statistically compare the occurrence of edges observed in
different graphs. [Joslyn et al., 2004] define distances between nodes in the GO graph for ordering GO terms with
respect to a group of genes. A GO term is considered more important if many genes in the group are annotated
to GO terms close in graph topology. The resulting rank-ordered list of GO terms is then clustered in order to
identify summarizing nodes for the characteristics of the gene group.

topGO package provides a set of classes and methods which allows the user to run the mentioned algorithms/methods.
Moreover the user can use the current framework to develop and test new enrichment algorithms which make use
of the GO structure.

This document gives an overview

2 Preprocessing

We analyse ALL gene expression data from [Chiaretti, S., et al., 2004]. The dataset consists of 128 microarrays
from different patients with ALL. First we load the libraries and the data:

> library(topGO)

> library(ALL)

> data(ALL)

When the topGO package is loaded three new environments GOBPTerm, GOMFTerm and GOMFTerm are created and
binded to the package environment. These environments are build based on the GOTERM environment from package
GO. They are used for fast recovering of the information specific to each ontology. In order to access all GO groups
that belong to a specific ontology, e.g. Biological Process (BP), one can type:

> BPterms <- ls(GOBPTerm)

> str(BPterms)

chr [1:14598] "GO:0000001" "GO:0000002" "GO:0000003" ...

Next we need to load the annotation data. The chip used for the experiment is HGU95aV2 Affymetrix.

> affyLib <- paste(annotation(ALL), "db", sep = ".")

> library(package = affyLib, character.only = TRUE)

Usually one needs to remove genes with low expression value and genes which might have very small variability
across the samples. Package genefilter provides such tools.

> library(genefilter)

> f1 <- pOverA(0.25, log2(100))

> f2 <- function(x) (IQR(x) > 0.5)

> ff <- filterfun(f1, f2)

> eset <- ALL[genefilter(ALL, ff),]

3 Sample session

This section provides a quick start in performing an enrichment analysis. Details about the used functions will be
presented in the following section.

Lets assume we want to test enrichment of GO terms with differentially expressed genes. The first step is to

3.1 Deciding on the test

get gene

3.2 Setting the annotations

3.3 Running an algorithm

3.4 Looking at the results

4 Creating a topGOdata object

The first step when using the topGO package is to create a topGOdata object. This object will contain all information
necessary for the GO analysis, namely the gene list, the list of interesting genes, the scores of genes (if available)
and the part of the GO ontology (the GO graph) which needs to be used in the analysis.

First, we need to define the set of genes that are to be annotated with GO terms. Usually, one starts with all genes
present on the array. In our case we start with 2400 genes, genes that were not removed by the filtering.

> geneNames <- featureNames(eset)

> length(geneNames)

In the next step the user needs to define the list of interesting genes or to compute gene scores that quantify the
significance of the genes. The topGO package deals with these two cases in a unified way. The only difference is the
way the topGOdata object is build.

4.1 Predefined list of interesting genes

If the user has some a priori knowledge about a set of interesting genes, he can test the enrichment of GO terms
with regard to this list of interesting genes. In this scenario, when only a list of interesting genes is provided, the
user is restricted to the use of tests statistics that use only counts of genes.

To exemplify this we randomly select 100 genes and consider them as interesting genes.

> myInterestedGenes <- sample(geneNames, 100)

> geneList <- factor(as.integer(geneNames %in% myInterestedGenes))

> names(geneList) <- geneNames

> str(geneList)

Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
- attr(*, "names")= chr [1:2400] "1005_at" "1007_s_at" "1008_f_at" "1009_at" ...

The object geneList is a named factor that indicates which genes are interesting and which not. It is straight-
forward to compute such a named vector in the situation where a user has his own predefined list of interesting
genes.

Next the topGOdata object is build. The user needs to specify the ontology of interest (BP, MF or CC) and an
annotation function which maps genes/probe IDs to GO terms. The function annFun.hgu contained in the package
is such an annotation function. As long as the user is using Affymetrix chips, this function does not need to be
modified. In other cases the function can be easily modified to comply with the user’s needs.

> GOdata <- new("topGOdata", ontology = "MF", allGenes = geneList,

+ annot = annFUN.db, affyLib = affyLib)

Building most specific GOs (925 GO terms found.)

Build GO DAG topology (1330 GO terms and 1602 relations.)

Annotating nodes (2121 genes annotated to the GO terms.)

The initialisation of the GOdata object can take around one minute, depending on the number of annotated genes
and on the chosen ontology (in this example we used MF as the ontology of interest). By typing GOdata, the user
can see the values of some slots.

> GOdata

------------------------- topGOdata object -------------------------

Description:
-

Ontology:
- MF

2400 available genes (all genes from the array):
- symbol: 1005_at 1007_s_at 1008_f_at 1009_at 1020_s_at ...
- 100 significant genes.

2121 feasible genes (genes that can be used in the analysis):
- symbol: 1005_at 1007_s_at 1008_f_at 1009_at 1020_s_at ...
- 89 significant genes.

GO graph (nodes with at least 0 genes):
- a graph with directed edges
- number of nodes = 1330
- number of edges = 1602

------------------------- topGOdata object -------------------------

One important point here is that not all the genes that are provided by geneList can be annotated to the GO.
This can be seen by comparing the number of all available genes (the genes present in geneList) with the number
of feasible genes. It is straight forward to use only the feasible genes for the rest of the analysis, since for other
genes no information is available.

The GO graph shows the number of nodes and edges of the specified GO ontology induced by the geneList. This
graph contains only GO terms with at least one annotated feasible gene.

4.2 Using the genes score

In many cases the set of interesting genes can be computed based on a score assigned to all genes, for example
based on the p-value returned by a study of differential expression. In this case, the topGOdata object can store
the genes score and the rule specifying the list of interesting genes. However, the availability of genes scores allows
the user to choose from a larger family of tests statistics to be used in the GO analysis.

A typical example is the study of the ALL dataset where we need to discriminate between ALL cells delivered from
either B-cell or T-cell precursors. There are 95 B-cell ALL samples and 33 T-cell ALL samples in the dataset.

p−values

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00

p−values < 0.1

F
re

qu
en

cy

0.00 0.02 0.04 0.06 0.08 0.10

0
50

10
0

20
0

Figure 1: The distribution of the gene’s adjusted p-values.

> y <- as.integer(sapply(eset$BT, function(x) return(substr(x,

+ 1, 1) == "T")))

> str(y)

A two-sided t-test can by applied using the function getPvalues. By default the function computes FDR (false
discovery rate) adjusted p-value in order to account for multiple testing. A different type of correction can be
specified using the correction parameter. The distribution of the adjusted p-values is shown in Figure 1.

> geneList <- getPvalues(exprs(eset), classlabel = y, alternative = "greater")

> hist(geneList, br = 50)

Next, a function for specifying the list of interesting genes must be defined. This function needs to select genes
based on their scores (in our case the adjusted p-values) and must return a logical vector specifying which gene is
selected and which not. Also, this function must have one parameter, named allScore and must not depend on
the names attribute of this parameter. For example, if we consider as interesting genes all genes with an adjusted
p-value lower than 0.01, the function will look as follows:

> topDiffGenes <- function(allScore) {

+ return(allScore < 0.01)

+ }

> x <- topDiffGenes(geneList)

> sum(x)

With all these steps done, the user can now build the topGOdata object

> GOdata <- new("topGOdata", ontology = "BP", allGenes = geneList,

+ geneSel = topDiffGenes, description = "GO analysis of ALL data based on diff. expression.",

+ annot = annFUN.db, affyLib = affyLib)

Building most specific GOs (1452 GO terms found.)

Build GO DAG topology (2913 GO terms and 5102 relations.)

Annotating nodes (2071 genes annotated to the GO terms.)

Note that the only difference to the case in which we start with a predefined list of interesting genes is the use of
the geneSel parameter. All further analysis depends only on this GOdata object.

5 Working with the topGOdata object

Once the topGOdata object is created the user can use various methods defined for this class to access the infor-
mation encapsulated in the object.

The description slot contains information about the experiment. This information can be accessed or replaced
using the method with the same name.

> description(GOdata)

> description(GOdata) <- paste(description(GOdata), "Object modified on:",

+ format(Sys.time(), "%d %b %Y"), sep = " ")

> description(GOdata)

Methods to obtain the list of genes that will be used in the further analysis or methods for obtaining all gene scores
are exemplified below.

> a <- genes(GOdata)

> str(a)

> numGenes(GOdata)

Next we describe how to retrieve the score of a specified set of genes, e.g. a set of randomly selected genes. If the
object was constructed using a list of interesting genes, then the factor vector that was provided at the building of
the object will be returned.

> selGenes <- sample(a, 10)

> gs <- geneScore(GOdata, whichGenes = selGenes)

> print(gs)

If the user wants an unnamed vector or the score of all genes:

> gs <- geneScore(GOdata, whichGenes = selGenes, use.names = FALSE)

> print(gs)

> gs <- geneScore(GOdata, use.names = FALSE)

> str(gs)

The list of significant genes can be accessed using the method sigGenes().

> sg <- sigGenes(GOdata)

> str(sg)

> numSigGenes(GOdata)

Another useful method is updateGenes which allows the user to update/change the list of genes (and their scores)
from a topGOdata object. If one wants to update the list of genes by including only the feasible ones, one can type:

> .geneList <- geneScore(GOdata, use.names = TRUE)

> GOdata

> GOdata <- updateGenes(GOdata, .geneList, topDiffGenes)

> GOdata

There are also methods available for accessing information related to GO and its structure. First, we want to know
which GO terms are available for analysis and to obtain all the genes annotated to a subset of these GO terms.

> graph(GOdata)

A graphNEL graph with directed edges
Number of Nodes = 2913
Number of Edges = 5102

> ug <- usedGO(GOdata)

> str(ug)

chr [1:2913] "GO:0000002" "GO:0000003" "GO:0000018" ...

Next, we select some random GO terms, count the number of annotated genes and obtain their annotation.

> sel.terms <- sample(usedGO(GOdata), 10)

> num.ann.genes <- countGenesInTerm(GOdata, sel.terms)

> num.ann.genes

> ann.genes <- genesInTerm(GOdata, sel.terms)

> str(ann.genes)

When the sel.terms parameter is missing all GO terms are used. The scores for all genes, possibly annotated
with names of the genes, can be obtained using the method scoresInTerm().

> ann.score <- scoresInTerm(GOdata, sel.terms)

> str(ann.score)

> ann.score <- scoresInTerm(GOdata, sel.terms, use.names = TRUE)

> str(ann.score)

Finally, some statistics for a set of GO terms are returned by the method termStat. As mentioned previously, if
the sel.terms parameter is missing then the statistics for all available GO terms are returned.

> termStat(GOdata, sel.terms)

Annotated Significant Expected
GO:0033365 1 0 0.12
GO:0045638 6 2 0.71
GO:0019883 2 0 0.24
GO:0035305 1 0 0.12
GO:0048545 6 1 0.71
GO:0007190 4 0 0.47
GO:0051341 4 0 0.47
GO:0000902 46 6 5.42
GO:0001541 2 1 0.24
GO:0009792 16 2 1.89

6 The GO analysis

We are now ready to start the GO analysis. The main function is getSigGroups() which takes two parameters.
The first parameter is of class topGOdata and the second parameter is of class groupStats. The topGO package is
designed to work with different test statistics and with multiple GO graph algorithms, see [Alexa, A., et al., 2006].

6.1 High-level interface

xxxxxxxxxxxxx

There are three algorithms implemented in the package: classic, elim and weight. Also there are two types of test
statistics which can be used, test statistics based on gene counts (like Fisher’s exact test) and test statistics based
on the genes scores (like Kolmogorov-Smirnov test). To distinguish between all the algorithms and to secure that
all test statistics are only used with the appropriate algorithms, two classes are defined for each algorithm. b To
better understand this principle consider the following example. Assume we decided to apply the classic algorithm.
The two classes defined for this algorithm are classicCount and classicScore. If an object of this class is given
as a parameter to getSigGroups() than the classic algorithm will be used. The getSigGroups() function can take
a while, depending on the size of the graph (the ontology used), so be patient.

> test.stat <- new("classicCount", testStatistic = GOFisherTest,

+ name = "Fisher test")

> resultFis <- getSigGroups(GOdata, test.stat)

-- Classic Algorithm --

the algorithm is scoring 1245 nontrivial nodes
parameters:

test statistic: Fisher test

According to this mechanism, one first defines a test statistic for the chosen algorithm, in this case classic and then
runs the algorithm (see the second line). The slot testStatistic contains the test statistic function. In the above
example GOFisherTest function which implements Fisher’s exact test and is available in the topGO package was
used. A user can define his own test statistic function and then apply it using the classic algorithm. (For example
a function which computes the Z score can be implemented using as an example the GOFisherTest function.)

For the Kolmogorov-Smirnov (KS) test we have:

> test.stat <- new("classicScore", testStatistic = GOKSTest,

+ name = "KS tests")

> resultKS <- getSigGroups(GOdata, test.stat)

-- Classic Algorithm --

the algorithm is scoring 2913 nontrivial nodes
parameters:

test statistic: KS tests
score order: increasing

This time we used the class classicScore. This is done since the KS test needs scores of all genes and in this case
the representation of a group of genes (GO term) is different.

The mechanism presented above for classic also hold for elim and weight with the only remark that for the weight
algorithm no test based on gene scores is implemented. To run the elim algorithm with Fisher’s exact test one
needs to write:

> test.stat <- new("elimCount", testStatistic = GOFisherTest,

+ name = "Fisher test", cutOff = 0.01)

> resultElim <- getSigGroups(GOdata, test.stat)

-- Elim Algorithm --

the algorithm is scoring 1245 nontrivial nodes
parameters:

test statistic: Fisher test
cutOff: 0.01

Level 15: 2 nodes to be scored (0 eliminated genes)

Level 14: 7 nodes to be scored (0 eliminated genes)

Level 13: 18 nodes to be scored (5 eliminated genes)

Level 12: 27 nodes to be scored (5 eliminated genes)

Level 11: 42 nodes to be scored (8 eliminated genes)

Level 10: 77 nodes to be scored (12 eliminated genes)

Level 9: 132 nodes to be scored (24 eliminated genes)

Level 8: 178 nodes to be scored (30 eliminated genes)

Level 7: 195 nodes to be scored (38 eliminated genes)

Level 6: 218 nodes to be scored (39 eliminated genes)

Level 5: 172 nodes to be scored (43 eliminated genes)

Level 4: 106 nodes to be scored (47 eliminated genes)

Level 3: 52 nodes to be scored (97 eliminated genes)

Level 2: 18 nodes to be scored (97 eliminated genes)

Level 1: 1 nodes to be scored (97 eliminated genes)

Similarly, for the weight algorithm one types:

> test.stat <- new("weightCount", testStatistic = GOFisherTest,

+ name = "Fisher test", sigRatio = "ratio")

> resultWeight <- getSigGroups(GOdata, test.stat)

-- Weight Algorithm --

The algorithm is scoring 1245 nontrivial nodes
parameters:

test statistic: Fisher test : ratio

Level 15: 2 nodes to be scored.

Level 14: 7 nodes to be scored.

Level 13: 18 nodes to be scored.

Level 12: 27 nodes to be scored.

Level 11: 42 nodes to be scored.

Level 10: 77 nodes to be scored.

Level 9: 132 nodes to be scored.

Level 8: 178 nodes to be scored.

Level 7: 195 nodes to be scored.

Level 6: 218 nodes to be scored.

Level 5: 172 nodes to be scored.

Level 4: 106 nodes to be scored.

Level 3: 52 nodes to be scored.

Level 2: 18 nodes to be scored.

Level 1: 1 nodes to be scored.

Next we look at the results of the analysis. First we need to put all resulting p-values into a list. Then we can use
the GenTable function to generate a table with the results.

GO.ID Term Annotated Significant Expected Rank in classic classic KS elim weight
1 GO:0050870 positive regulation of T cell activation 15 9 1.77 3 1.0e-05 0.00040 0.00219 1e-05
2 GO:0050857 positive regulation of antigen receptor-... 4 4 0.47 13 0.00019 0.00121 0.00019 0.00019
3 GO:0030217 T cell differentiation 15 9 1.77 4 1.0e-05 0.00047 0.00066 0.00066
4 GO:0051209 release of sequestered calcium ion into ... 5 4 0.59 20 0.00086 0.00591 0.00086 0.00086
5 GO:0030854 positive regulation of granulocyte diffe... 3 3 0.35 27 0.00162 0.00613 0.00162 0.00162
6 GO:0007200 G-protein signaling, coupled to IP3 seco... 7 4 0.82 40 0.00493 0.05030 0.00493 0.00493
7 GO:0050863 regulation of T cell activation 19 12 2.24 2 1.3e-07 2.0e-05 0.00541 0.00541
8 GO:0030101 natural killer cell activation 4 3 0.47 42 0.00591 0.03415 0.00591 0.00591
9 GO:0040014 regulation of multicellular organism gro... 4 3 0.47 43 0.00591 0.02109 0.00591 0.00591

10 GO:0046661 male sex differentiation 4 3 0.47 44 0.00591 0.03071 0.00591 0.00591
11 GO:0007565 female pregnancy 12 5 1.41 53 0.00858 0.07702 0.00858 0.00858
12 GO:0045619 regulation of lymphocyte differentiation 9 5 1.06 30 0.00184 0.02383 0.00184 0.01324
13 GO:0008585 female gonad development 5 3 0.59 64 0.01348 0.07432 0.01348 0.01348
14 GO:0022602 ovulation cycle process 5 3 0.59 65 0.01348 0.07432 0.01348 0.01348
15 GO:0019218 regulation of steroid metabolic process 4 3 0.47 45 0.00591 0.00802 0.00591 0.01374
16 GO:0001766 membrane raft polarization 2 2 0.24 71 0.01383 0.03930 0.01383 0.01383
17 GO:0001915 negative regulation of T cell mediated c... 2 2 0.24 72 0.01383 0.03488 0.01383 0.01383
18 GO:0001960 negative regulation of cytokine and chem... 2 2 0.24 73 0.01383 0.03488 0.01383 0.01383
19 GO:0002378 immunoglobulin biosynthetic process 2 2 0.24 74 0.01383 0.03488 0.01383 0.01383
20 GO:0007379 segment specification 2 2 0.24 75 0.01383 0.03835 0.01383 0.01383

Table 1: Significance of GO terms according to different tests.

> allRes <- GenTable(GOdata, classic = resultFis, KS = resultKS,

+ elim = resultElim, weight = resultWeight, orderBy = "weight",

+ ranksOf = "classic", topNodes = 20)

allRes is a data.frame containing the top 20 GO terms identified by the weight algorithm (see orderBy parameter).
This parameter allows the user decide which p-values should be used for ordering the GO terms. The table includes
some statistics on the GO terms plus the p-values obtained from the other algorithms/test statistics. Table 1 shows
the results.

Another insightful way of looking at the results of the analysis is to investigate how the significant GO terms are
distributed over the GO graph. For each algorithm the subgraph induced by the most significant GO terms is
plotted. In the plots, the significant nodes are represented as boxes. The plotted graph is the upper induced graph
generated by these significant nodes.

> showSigOfNodes(GOdata, score(resultFis), firstTerms = 5,

+ useInfo = "all")

> showSigOfNodes(GOdata, score(resultWeight), firstTerms = 5,

+ useInfo = "def")

If we want to print the graphs to .pdf or .ps file, then we can use the following command:

> printGraph(GOdata, resultWeight, firstSigNodes = 5, fn.prefix = "tGO",

+ pdfSW = TRUE)

tGO_weightCount_5_def --- no of nodes: 94

To emphasise differences between two methods, one can type:

> printGraph(GOdata, resultWeight, firstSigNodes = 10,

+ resultFis, fn.prefix = "tGO", useInfo = "def")

tGO_weightCount_classicCount_10_def --- no of nodes: 109

> printGraph(GOdata, resultElim, firstSigNodes = 15, resultFis,

+ fn.prefix = "tGO", useInfo = "all")

tGO_elimCount_classicCount_15_all --- no of nodes: 141

7 Session Information

The version number of R and packages loaded for generating the vignette were:

GO:0001775
cell activation

0.000166
17/57

GO:0002376
immune system proces...

0.029186
34/211

GO:0002520
immune system develo...

0.001037
16/60

GO:0002521
leukocyte differenti...

2.39e−05
14/36

GO:0002682
regulation of immune...

0.000172
14/42

GO:0002684
positive regulation ...

0.002509
11/37

GO:0002694
regulation of leukoc...

1.80e−05
13/31

GO:0002696
positive regulation ...

0.000410
10/26

GO:0007275
multicellular organi...

0.114003
44/315

GO:0008150
biological_process

1.000000
244/2071

GO:0009987
cellular process

0.772233
217/1865

GO:0030097
hemopoiesis

0.000690
16/58

GO:0030098
lymphocyte different...

7.46e−05
11/26

GO:0030154
cell differentiation

0.123434
46/333

GO:0030217
T cell differentiati...

1.00e−05
9/15

GO:0032501
multicellular organi...

0.027073
60/408

GO:0032502
developmental proces...

0.219439
64/498

GO:0042110
T cell activation

3.67e−08
15/27

GO:0045321
leukocyte activation

4.53e−05
17/52

GO:0046649
lymphocyte activatio...

0.000229
15/48

GO:0048513
organ development

0.065590
29/187

GO:0048518
positive regulation ...

0.264143
35/267

GO:0048522
positive regulation ...

0.283003
33/253

GO:0048534
hemopoietic or lymph...

0.000849
16/59

GO:0048731
system development

0.073051
37/250

GO:0048856
anatomical structure...

0.073157
41/281

GO:0048869
cellular development...

0.123434
46/333

GO:0050789
regulation of biolog...

0.823081
95/859

GO:0050794
regulation of cellul...

0.745751
92/817

GO:0050863
regulation of T cell...

1.31e−07
12/19

GO:0050865
regulation of cell a...

1.80e−05
13/31

GO:0050867
positive regulation ...

0.000410
10/26

GO:0050870
positive regulation ...

1.00e−05
9/15

GO:0051239
regulation of multic...

0.002502
15/59

GO:0051240
positive regulation ...

0.001865
12/41

GO:0051249
regulation of lympho...

4.52e−05
12/29

GO:0051251
positive regulation ...

0.001402
9/25

GO:0065007
biological regulatio...

0.426530
112/935

Figure 2: The subgraph induced by the top 5 GO terms identified by the classic algorithm for scoring GO terms for
enrichment. Boxes indicate the 5 most significant terms. Box color represents the relative significance, ranging from
dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships and red arrows
part-of relationships.

� R version 2.7.0 (2008-04-22), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, grid, methods, splines, stats, tools, utils

� Other packages: ALL 1.4.3, AnnotationDbi 1.2.0, Biobase 2.0.0, DBI 0.2-4, genefilter 1.20.0, GO.db 2.2.0,
graph 1.18.0, hgu95av2.db 2.2.0, multtest 1.20.0, Rgraphviz 1.18.0, RSQLite 0.6-8, SparseM 0.77, sur-
vival 2.34-1, topGO 1.8.1, xtable 1.5-2

� Loaded via a namespace (and not attached): annotate 1.18.0, cluster 1.11.10

GO:0001775
cell activation

GO:0002253
activation of immune...

GO:0002376
immune system proces...

GO:0002429
immune response−acti...

GO:0002520
immune system develo...

GO:0002521
leukocyte differenti...

GO:0002573
myeloid leukocyte di...

GO:0002682
regulation of immune...

GO:0002684
positive regulation ...

GO:0002694
regulation of leukoc...

GO:0002696
positive regulation ...

GO:0002757
immune response−acti...

GO:0002761
regulation of myeloi...

GO:0002763
positive regulation ...

GO:0002764
immune response−regu...

GO:0002768
immune response−regu...

GO:0006873
cellular ion homeost...

GO:0006874
cellular calcium ion...

GO:0006875
cellular metal ion h...

GO:0006955
immune response

GO:0007154
cell communication

GO:0007165
signal transduction

GO:0007166
cell surface recepto...

GO:0007204
elevation of cytosol...

GO:0007275
multicellular organi...

GO:0008150
biological_process

GO:0009966
regulation of signal...

GO:0009967
positive regulation ...

GO:0009987
cellular process

GO:0019725
cellular homeostasis

GO:0030003
cellular cation home...

GO:0030005
cellular di−, tri−va...

GO:0030097
hemopoiesis

GO:0030098
lymphocyte different...

GO:0030099
myeloid cell differe...

GO:0030154
cell differentiation

GO:0030217
T cell differentiati...

GO:0030851
granulocyte differen...

GO:0030852
regulation of granul...

GO:0030854
positive regulation ...

GO:0032501
multicellular organi...

GO:0032502
developmental proces...

GO:0042110
T cell activation

GO:0042592
homeostatic process

GO:0045321
leukocyte activation

GO:0045595
regulation of cell d...

GO:0045597
positive regulation ...

GO:0045637
regulation of myeloi...

GO:0045639
positive regulation ...

GO:0046649
lymphocyte activatio...

GO:0048513
organ development

GO:0048518
positive regulation ...

GO:0048522
positive regulation ...

GO:0048534
hemopoietic or lymph...

GO:0048583
regulation of respon...

GO:0048584
positive regulation ...

GO:0048731
system development

GO:0048856
anatomical structure...

GO:0048869
cellular development...

GO:0048878
chemical homeostasis

GO:0050776
regulation of immune...

GO:0050778
positive regulation ...

GO:0050789
regulation of biolog...

GO:0050793
regulation of develo...

GO:0050794
regulation of cellul...

GO:0050801
ion homeostasis

GO:0050851
antigen receptor−med...

GO:0050854
regulation of antige...

GO:0050857
positive regulation ...

GO:0050863
regulation of T cell...

GO:0050865
regulation of cell a...

GO:0050867
positive regulation ...

GO:0050870
positive regulation ...

GO:0050896
response to stimulus

GO:0051094
positive regulation ...

GO:0051179
localization

GO:0051208
sequestering of calc...

GO:0051209
release of sequester...

GO:0051235
maintenance of local...

GO:0051238
sequestering of meta...

GO:0051239
regulation of multic...

GO:0051240
positive regulation ...

GO:0051249
regulation of lympho...

GO:0051251
positive regulation ...

GO:0051282
regulation of seques...

GO:0051283
negative regulation ...

GO:0051480
cytosolic calcium io...

GO:0055065
metal ion homeostasi...

GO:0055066
di−, tri−valent inor...

GO:0055074
calcium ion homeosta...

GO:0055080
cation homeostasis

GO:0055082
cellular chemical ho...

GO:0065007
biological regulatio...

GO:0065008
regulation of biolog...

Figure 3: The subgraph induced by the top 5 GO terms identified by the weight algorithm for scoring GO terms for
enrichment. Boxes indicate the 5 most significant terms. Box color represents the relative significance, ranging from
dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships and red arrows
part-of relationships.

References

[Al-Shahrour, F., et al., 2004] Al-Shahrour, F., et al. (2004). FatiGO: a web tool for finding significant associations
of Gene Ontology terms with groups of genes. Bioinformatics, 20:578–580.

[Alexa, A., et al., 2006] Alexa, A., et al. (2006). Improvined scoring of functional groups from gene expression data
be decorrelating go graph structure. Bioinformatics, 22(13):1600–1607.

[Balasubramanian et al., 2004] Balasubramanian, R., LaFramboise, T., Scholtens, D., and Gentleman, R. (2004).
A graph-theoretic approach to testing associations between disparate sources of functional genomics data. Bioin-
formatics, 20(18):3353–3362.

[Chiaretti, S., et al., 2004] Chiaretti, S., et al. (2004). Gene expression profile of adult T-cell acute lymphocytic
leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood, 103(7):2771–
2778.

[Draghici et al., 2003] Draghici, S., Khatri, P., Martins, R. P., Ostermeier, C., and Krwetz, S. A. (2003). Global
functional profiling of gene expression. Genomics, 81:98–104.

[Grossmann et al., 2006] Grossmann, S., Bauer, S., Robinson, P. N., and Vingron, M. (2006). An improved statistic
for detecting over-represented Gene Ontology annotations in gene sets. In Proc. 10th Ann. Int. Conf. on Res. in
Comput. Biol. (RECOMB ’06), Venice.

[Joslyn et al., 2004] Joslyn, C. A., Mniszewski, S. M., Fulmer, A., and Heaton, G. (2004). The Gene Ontology
Categorizer. Bioinformatics, 20(Suppl. 1):i169–i177.

[Khatri and Draghici, 2005] Khatri, P. and Draghici, S. (2005). Ontological analysis of gene expression data:
current tools, limitations, and open problems. Bioinformatics, 21(18):3587–3595.

[Zeeberg, B. R., et al., 2003] Zeeberg, B. R., et al. (2003). GoMiner: a resource for biological interpretation of
genomic and proteomic data. Genome Biology, 4(4):R28.

