
Introduction to identifying functional residues
in an alignment using BGAFUN

Iain Wallace

April 30, 2008

Proteins that evolve from a common ancestor can change functionality
over time, and it is important to be able identify residues that cause this
change. There are numerous different methods that can be used to solve this
problem.

This package contains the functions to use supervised multivariate statis-
tical method, Between Group Analysis (BGA) [Culhane et al., 2005] to iden-
tify these residues from families of proteins with different substrate specifities
using multiple sequence alignments.

The main steps involved are

1. Reading in the alignment

2. Defining groups

3. Convert alignment into a matrix

4. Run the Between Groups Analysis

5. Plot the results

6. Identify important positions in the Alignment

1 Reading in the alignment

The sequences are read in using the seqinR [Charif & Lobry, 2006] commands

1

> library(bgafun)

> LDH <- read.alignment(file = system.file("sequences/LDH-MDH-PF00056.fasta",

+ package = "bgafun"), format = "fasta")

> class(LDH)

[1] "alignment"

2 Defining groups

Next, a factor assigning each sequence to a group has to be defined. One
method of doing this is shown in the code below. The alignment object is
first converted into a matrix, in which the rownames are sequence names

> library(bgafun)

> data(LDH)

> LDH.amino = convert_aln_amino(LDH)

> LDH.groups = rownames(LDH.amino)

> LDH.groups[grep("LDH", LDH.groups)] = "LDH"

> LDH.groups[grep("MDH", LDH.groups)] = "MDH"

> LDH.groups = as.factor(LDH.groups)

> LDH.groups

[1] MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH

[20] MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH MDH LDH

[39] LDH LDH LDH LDH LDH LDH LDH

Levels: LDH MDH

3 Convert alignment into a matrix

The alignment has to be converted into a matrix that is suitable for Between
Group Analysis. There are two different encoding schemes available in this
package

1. Binary

2. Amino Acid Properties

2

3.1 Binary Encoding Scheme

Each column in the sequence alignment is represented by a binary vector of
length 20 which represents the presence or absence of a particular amino acid
at this position. This results in a data matrix of dimension NxLx20 where
N is the number of sequences and L is the length of the alignment. Gaps
are removed from the matrix using the remove gaps groups function. This
removes columns that contain more than a certain percentage, gap fraction,
of gaps in a column in the alignment in any of the defined groups.

> library(bgafun)

> data(LDH)

> data(LDH.groups)

> LDH.amino = convert_aln_amino(LDH)

> dim(LDH.amino)

[1] 45 3600

> LDH.amino.gapless = remove_gaps_groups(LDH.amino, LDH.groups)

> dim(LDH.amino.gapless)

[1] 45 2820

We found that it is important to add pseudo count as otherwise the
absence of amino acids in a column dominates the analysis. There are two
methods of adding pseudocounts:

1. Add 1 to all elements in the matrix

> library(bgafun)

> data(LDH.amino.gapless)

> LDH.pseudo = LDH.amino.gapless + 1

> dim(LDH.pseudo)

[1] 45 2820

2. Use the add pseudo counts function

> library(bgafun)

> data(LDH.amino.gapless)

> LDH.pseudo = add_pseudo_counts(LDH.amino.gapless, LDH.groups)

> dim(LDH.pseudo)

[1] 45 2820

3

3.2 Amino Acid Properties Encoding Scheme

Each residue in the alignment is represented by a vector of five continuous
variables as given by Atchley et al [Atchley et al., 2005]. They applied a
multivariate statistic approach to reduce the information in 494 amino acid
attributes into a set of five factors for each amino acid.

1. Factor A is termed the polarity index. It correlates well with a large
variety of descriptors including the number of hydrogen bond donors,
polarity versus nonpolarity, and hydrophobicity versus hydrophilicity.

2. Factor B is a secondary structure index. It represents the propensity
of an amino acid to be in a particular type of secondary structure, such
as a coil, turn or bend versus the frequency of it in an a-helix.

3. Factor C is correlated with molecular size, volume and molecular weight.

4. Factor D reflects the number of codons coding for an amino acid and
amino acid composition. These attributes are related to various physi-
cal properties including refractivity and heat capacity.

5. Factor E is related to the electrostatic charge.

Columns in the alignment containing more than 80% gaps are removed.
When using the AAP encoding, the remaining gaps were replaced with the
average value for the subfamily in that column using the function aver-
age cols aap

> library(bgafun)

> data(LDH)

> data(LDH.groups)

> LDH.aap = convert_aln_AAP(LDH)

> dim(LDH.aap)

[1] 45 900

> LDH.aap.ave = average_cols_aap(LDH.aap, LDH.groups)

> dim(LDH.aap.ave)

[1] 45 690

4

4 Run the Between Groups Analysis

Two different ordination techniques can be used, either Principal Compo-
nents Analysis or Correspondance Analysis. PCA is the most suitable ordi-
nation technique for the AAP encoding as it can be used to ordinate data
that contains continuous variables. CA, on the other hand, can only be used
to ordinate data that contains positive integer values, such as the binary
representation of a sequence alignment. To run the analysis with PCA the
run between pca function is used, It requires an binary amino acid matrix
which is used to calculate sequence weights, the matrix to be analysised and
the group definition

> library(bgafun)

> data(LDH)

> data(LDH.groups)

> data(LDH.amino.gapless)

> data(LDH.aap.ave)

> LDH.aap.ave.bga = run_between_pca(LDH.amino.gapless, LDH.aap.ave,

+ LDH.groups)

> class(LDH.aap.ave.bga)

[1] "pca" "bga"

To run the analysis with CA, without weights and with very simple pseudo-
counts

> library(bgafun)

> data(LDH.groups)

> data(LDH.amino.gapless)

> LDH.binary.bga = bga(t(LDH.amino.gapless + 1), LDH.groups)

5 Plot the results

The results are plotted using the MADE4 functions. When the labels overlab,
like below, the easiest method to clean them is to use Photoshop.

5

> plot(LDH.aap.ave.bga)

[1] 191 192 194 311 376 378 380 384 401 483 485 523 586 587 588 589 590 591 637

[20] 640

●MDH−ECO57
●MDH−MANSM
●MDH−SULAC

●MDH−NITAL

●MDH−HAEDU ●MDHM−YEAST ●MDHM−BRANA ●MDHG−SOYBN
●MDHM−CHLRE
●MDHM−SCHMA ●MDHM−HUMAN
●MDHM−CAEEL
●MDHP−YEAST
●MDHC−YEAST

●MDHC−MEDSA ●MDHC−PIG
●MDHC−ECHGR
●MDH−XANCP
●MDH−AQUAR
●MDH−BDEBA

●MDH−DEIRA
●MDH−THET2 ●MDH−DESPS ●MDH−PROAC

●MDH−MYCLE

●MDH−NOCFA
●MDH−STRAW ●MDH−NITEU ●MDH−LEGPH ●MDH−COXBU
●MDH−LEPIN ●MDH−METCA ●MDH−CORDI ●MDH−COREF
●MDH−PARUW●MDH−CHLMU
●MDH−CHLCV

●LDHB−FUNHE|−1.1.1.27|PF00056 ●LDHA−HARAN|−1.1.1.27|PF00056
●LDHC−PIG|−1.1.1.27|PF00056
●LDHC−RAT|−1.1.1.27|PF00056
●LDH−CAEEL|−1.1.1.27|PF00056 ●LDH6B−HUMAN|−1.1.1.27|PF00056 ●LDH−DROME|−1.1.1.27|PF00056
●LDH−MAIZE|−1.1.1.27|PF00056

●

●

LDH

MDH

biplot of arrays and genes

●MDH−ECO57
●MDH−MANSM
●MDH−SULAC

●MDH−NITAL

●MDH−HAEDU ●MDHM−YEAST ●MDHM−BRANA ●MDHG−SOYBN
●MDHM−CHLRE
●MDHM−SCHMA ●MDHM−HUMAN
●MDHM−CAEEL
●MDHP−YEAST
●MDHC−YEAST

●MDHC−MEDSA ●MDHC−PIG
●MDHC−ECHGR
●MDH−XANCP
●MDH−AQUAR
●MDH−BDEBA

●MDH−DEIRA
●MDH−THET2 ●MDH−DESPS ●MDH−PROAC

●MDH−MYCLE

●MDH−NOCFA
●MDH−STRAW ●MDH−NITEU ●MDH−LEGPH ●MDH−COXBU
●MDH−LEPIN ●MDH−METCA ●MDH−CORDI ●MDH−COREF
●MDH−PARUW ●MDH−CHLMU
●MDH−CHLCV

●LDHB−FUNHE|−1.1.1.27|PF00056 ●LDHA−HARAN|−1.1.1.27|PF00056
●LDHC−PIG|−1.1.1.27|PF00056
●LDHC−RAT|−1.1.1.27|PF00056
●LDH−CAEEL|−1.1.1.27|PF00056 ●LDH6B−HUMAN|−1.1.1.27|PF00056 ●LDH−DROME|−1.1.1.27|PF00056
●LDH−MAIZE|−1.1.1.27|PF00056

arrays

●

X61A

X61BX61D

X93AX106AX106CX106E

X107D

X111AX127CX127E

X136C

X152A

X152BX152CX152DX152EX153A

X162B

X162E

genes

Figure 1: PCA plot of the LDH example

6

6 Identify important positions in the Align-

ment

Important positions for two groups can be identified by finding the most
extreme positions on the axis using the top residues 2 groups function

> top_res = top_residues_2_groups(LDH.binary.bga)

> names(top_res) = sub("X", "", names(top_res))

Important positions for three groups can be identified by finding the most
extreme positions that are plotted same direction as the sequences on the
graph

Now, to look at the amino acid content in the alignment that the analsyis
has identified one can use the following code. It creates a profile string for
each of the groups. This shows how many of each type of amino acids are
present in each group at every position. The

> LDH.profiles = create_profile_strings(LDH.amino, LDH.groups)

> LDH.profiles[, colnames(LDH.profiles) %in% names(top_res)]

4A 8A 9A 9G 12I 14M 16L 21L 45I 61E 61V 71F 89D 96S 102T 106R 106P 107R

LDH 0 1 0 8 0 8 0 8 0 8 0 8 8 8 8 8 0 0

MDH 28 33 30 2 34 0 34 0 24 0 32 0 0 0 1 0 31 35

111E 111M 114L 115D 119R 127Q 128G 130A 136A 136S 152N 152D 153T 154N 155T

LDH 8 0 8 1 8 0 0 0 0 8 0 8 0 0 8

MDH 2 32 0 34 1 23 23 27 23 1 35 0 25 23 1

157I 157V 159W 162A 162S 173P 179G 180S

LDH 0 8 8 0 8 8 8 8

MDH 33 1 0 23 0 0 0 1

7 Bib

References

[Atchley et al., 2005] Atchley, W. R., Zhao, J., Fernandes, A. D. & Druke, T.
(2005). Solving the protein sequence metric problem. Proc Natl Acad Sci
U S A, 102(18), 6395–400.

7

[Charif & Lobry, 2006] Charif, D. & Lobry, J.R. (2006). Seqinr 1.0-2: a
contributed package to the r project for statistical computing devoted
to biological sequences retrieval and analysis. In Structural approaches
to sequence evolution: Molecules, networks, populations (Bastolla, U.,
Porto, M., Roman, H.E. & Vendruscolo, M., Hrsg.). Springer.

[Culhane et al., 2005] Culhane, A. C., Thioulouse, J., Perriere, G. & Hig-
gins, D. G. (2005). Made4: an r package for multivariate analysis of gene
expression data. Bioinformatics, 21(11), 2789–90.

8

