The org
packages contain information to map between different symbols. Here check for available org
packages.
BiocManager::available("^org\\.")
## [1] "org.Ag.eg.db" "org.At.tair.db" "org.Bt.eg.db"
## [4] "org.Ce.eg.db" "org.Cf.eg.db" "org.Dm.eg.db"
## [7] "org.Dr.eg.db" "org.EcK12.eg.db" "org.EcSakai.eg.db"
## [10] "org.Gg.eg.db" "org.Hs.eg.db" "org.Mm.eg.db"
## [13] "org.Mmu.eg.db" "org.Pf.plasmo.db" "org.Pt.eg.db"
## [16] "org.Rn.eg.db" "org.Sc.sgd.db" "org.Ss.eg.db"
## [19] "org.Xl.eg.db"
The regular expression "^org\\.")
insists that the package names
starts with org
("^org"
) followed by a literal period rather than
a wild-card representing any letter ("\\."
).
In addition to these packages, many org
resources are available from AnnotationHub, described below
library(AnnotationHub)
query(AnnotationHub(), "^org\\.")
## snapshotDate(): 2019-05-02
## AnnotationHub with 1710 records
## # snapshotDate(): 2019-05-02
## # $dataprovider: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
## # $species: Escherichia coli, 'Chlorella vulgaris'_C-169, 'Klebsiella a...
## # $rdataclass: OrgDb
## # additional mcols(): taxonomyid, genome, description,
## # coordinate_1_based, maintainer, rdatadateadded, preparerclass,
## # tags, rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH70563"]]'
##
## title
## AH70563 | org.Ag.eg.db.sqlite
## AH70564 | org.At.tair.db.sqlite
## AH70565 | org.Bt.eg.db.sqlite
## AH70566 | org.Cf.eg.db.sqlite
## AH70567 | org.Gg.eg.db.sqlite
## ... ...
## AH73812 | org.Plasmodium_vivax.eg.sqlite
## AH73813 | org.Burkholderia_mallei_ATCC_23344.eg.sqlite
## AH73814 | org.Bacillus_cereus_(strain_ATCC_14579_|_DSM_31).eg.sqlite
## AH73815 | org.Bacillus_cereus_ATCC_14579.eg.sqlite
## AH73816 | org.Schizosaccharomyces_cryophilus_OY26.eg.sqlite
The naming convention of org
objects uses a two-letter code to
represent species, e.g., Hs
is Homo sapiens followed by the
central identifier used to map to and from other symbols; for
org.Hs.eg.db
, the central identifier is the Entrez gene identifier,
and to map from, say HGNC Symbol to Ensembl identifier, a map must
exist between the gene symbol and the Entrez identifier, and then from
the Entrez identifier to the Ensembl identifier.
Many additional org
packages are available on AnnotationHub, as
mentioned briefly below.
library(org.Hs.eg.db)
We can discover available keytypes()
for querying the database, and
columns()
to map to, e.g.,
head(keys(org.Hs.eg.db))
## [1] "1" "2" "3" "9" "10" "11"
Here are a handful of ENTREZID keys
eid <- sample(keys(org.Hs.eg.db), 10)
Two main functions are select()
and mapIds()
. mapIds()
is more
focused. It guarantees a one-to-one mapping between keys a single
selected column. By defaul, if a key maps to multiple values, then the
‘first’ value returned by the database is used. The return value is a
named vector; the 1:1 mapping between query and return value makes
this function particularly useful in pipelines where a single mapping
must occur.
mapIds(org.Hs.eg.db, eid, "SYMBOL", "ENTREZID")
## 'select()' returned 1:1 mapping between keys and columns
## 112268315 54012 106481389 57325 4113
## "LOC112268315" "ZNF299P" "RNU6-657P" "KAT14" "MAGEB2"
## 100418862 104413892 79160 106481873 105369543
## "SPECC1P1" "F10-AS1" "LINC01711" "RNU4-84P" "LOC105369543"
select()
is more general, returning a data.frame of keys, plus one
or more columns. If a key maps to multiple values, then multiple rows
are returned.
map <- select(org.Hs.eg.db, eid, c("SYMBOL", "GO"), "ENTREZID")
## 'select()' returned 1:many mapping between keys and columns
dim(map)
## [1] 17 5
head(map)
## ENTREZID SYMBOL GO EVIDENCE ONTOLOGY
## 1 112268315 LOC112268315 <NA> <NA> <NA>
## 2 54012 ZNF299P <NA> <NA> <NA>
## 3 106481389 RNU6-657P <NA> <NA> <NA>
## 4 57325 KAT14 GO:0000086 IEA BP
## 5 57325 KAT14 GO:0004402 IDA MF
## 6 57325 KAT14 GO:0005515 IPI MF
TxDb
packages contain information about gene models (exon, gene,
transcript coordinates). There are a number of TxDb
packages
available to install
library(dplyr) # for `%>%`
BiocManager::available("^TxDb") %>%
tibble::enframe(name = NULL)
## # A tibble: 34 x 1
## value
## <chr>
## 1 TxDb.Athaliana.BioMart.plantsmart22
## 2 TxDb.Athaliana.BioMart.plantsmart25
## 3 TxDb.Athaliana.BioMart.plantsmart28
## 4 TxDb.Btaurus.UCSC.bosTau8.refGene
## 5 TxDb.Celegans.UCSC.ce11.ensGene
## 6 TxDb.Celegans.UCSC.ce11.refGene
## 7 TxDb.Celegans.UCSC.ce6.ensGene
## 8 TxDb.Cfamiliaris.UCSC.canFam3.refGene
## 9 TxDb.Dmelanogaster.UCSC.dm3.ensGene
## 10 TxDb.Dmelanogaster.UCSC.dm6.ensGene
## # … with 24 more rows
and to download from AnnotationHub
query(AnnotationHub(), "^TxDb\\.")
## snapshotDate(): 2019-05-02
## AnnotationHub with 94 records
## # snapshotDate(): 2019-05-02
## # $dataprovider: UCSC
## # $species: Rattus norvegicus, Gallus gallus, Macaca mulatta, Caenorhab...
## # $rdataclass: TxDb
## # additional mcols(): taxonomyid, genome, description,
## # coordinate_1_based, maintainer, rdatadateadded, preparerclass,
## # tags, rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH52245"]]'
##
## title
## AH52245 | TxDb.Athaliana.BioMart.plantsmart22.sqlite
## AH52246 | TxDb.Athaliana.BioMart.plantsmart25.sqlite
## AH52247 | TxDb.Athaliana.BioMart.plantsmart28.sqlite
## AH52248 | TxDb.Btaurus.UCSC.bosTau8.refGene.sqlite
## AH52249 | TxDb.Celegans.UCSC.ce11.refGene.sqlite
## ... ...
## AH70596 | TxDb.Ptroglodytes.UCSC.panTro5.refGene.sqlite
## AH70597 | TxDb.Rnorvegicus.UCSC.rn5.refGene.sqlite
## AH70598 | TxDb.Rnorvegicus.UCSC.rn6.refGene.sqlite
## AH70599 | TxDb.Sscrofa.UCSC.susScr11.refGene.sqlite
## AH70600 | TxDb.Sscrofa.UCSC.susScr3.refGene.sqlite
Here we load the TxDb
object containing gene models for Homo
sapiens using annotations provided by UCSC for the hg38 genome build,
using the knownGene
annotation track.
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
exons()
, transcripts()
, genes()
The coordinates of annotated exons can be extracted as a GRanges
object
exons(TxDb.Hsapiens.UCSC.hg38.knownGene)
## GRanges object with 647025 ranges and 1 metadata column:
## seqnames ranges strand | exon_id
## <Rle> <IRanges> <Rle> | <integer>
## [1] chr1 11869-12227 + | 1
## [2] chr1 12010-12057 + | 2
## [3] chr1 12179-12227 + | 3
## [4] chr1 12613-12697 + | 4
## [5] chr1 12613-12721 + | 5
## ... ... ... ... . ...
## [647021] chrUn_GL000220v1 155997-156149 + | 647021
## [647022] chrUn_KI270442v1 380608-380726 + | 647022
## [647023] chrUn_KI270442v1 217250-217401 - | 647023
## [647024] chrUn_KI270744v1 51009-51114 - | 647024
## [647025] chrUn_KI270750v1 148668-148843 + | 647025
## -------
## seqinfo: 595 sequences (1 circular) from hg38 genome
Additional information is also present in the database, for instance the GENEID (Entrez gene id for these TxDb)
ex <- exons(TxDb.Hsapiens.UCSC.hg38.knownGene, columns = "GENEID")
ex
## GRanges object with 647025 ranges and 1 metadata column:
## seqnames ranges strand | GENEID
## <Rle> <IRanges> <Rle> | <CharacterList>
## [1] chr1 11869-12227 + | 100287102
## [2] chr1 12010-12057 + | 100287102
## [3] chr1 12179-12227 + | 100287102
## [4] chr1 12613-12697 + | 100287102
## [5] chr1 12613-12721 + | 100287102
## ... ... ... ... . ...
## [647021] chrUn_GL000220v1 155997-156149 + | 109864274
## [647022] chrUn_KI270442v1 380608-380726 + | <NA>
## [647023] chrUn_KI270442v1 217250-217401 - | <NA>
## [647024] chrUn_KI270744v1 51009-51114 - | <NA>
## [647025] chrUn_KI270750v1 148668-148843 + | <NA>
## -------
## seqinfo: 595 sequences (1 circular) from hg38 genome
Note that the object reports “595 sequences”; this is because the
exons include both standard chromosomes and partially assembled
contigs. Use keepStandardChromosomes()
to update the object to
contain only exons found on the ‘standard’ chromomes; the
pruning.mode=
argument determines whether sequence names that are
‘in use’ (have exons associated with them) can be dropped.
std_ex <- keepStandardChromosomes(ex, pruning.mode="coarse")
std_ex
## GRanges object with 591211 ranges and 1 metadata column:
## seqnames ranges strand | GENEID
## <Rle> <IRanges> <Rle> | <CharacterList>
## [1] chr1 11869-12227 + | 100287102
## [2] chr1 12010-12057 + | 100287102
## [3] chr1 12179-12227 + | 100287102
## [4] chr1 12613-12697 + | 100287102
## [5] chr1 12613-12721 + | 100287102
## ... ... ... ... . ...
## [591207] chrM 5826-5891 - | <NA>
## [591208] chrM 7446-7514 - | <NA>
## [591209] chrM 14149-14673 - | <NA>
## [591210] chrM 14674-14742 - | <NA>
## [591211] chrM 15956-16023 - | <NA>
## -------
## seqinfo: 25 sequences (1 circular) from hg38 genome
It is then possible to ask all sorts of question, e.g., the number of exons on each chromosome
table(seqnames(std_ex))
##
## chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12
## 54957 43673 35902 23108 26710 26200 28551 22424 20967 20752 35167 34142
## chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY
## 10059 20483 22509 29016 36559 10389 35837 12821 6621 13013 18396 2918
## chrM
## 37
or the identity the exons with more than 10000 nucleotides.
std_ex[width(std_ex) > 10000]
## GRanges object with 267 ranges and 1 metadata column:
## seqnames ranges strand | GENEID
## <Rle> <IRanges> <Rle> | <CharacterList>
## [1] chr1 32485101-32496686 + | 728116
## [2] chr1 35919499-35930528 + | 26523
## [3] chr1 36055637-36072500 + | 192669
## [4] chr1 92387011-92402056 + | 79871
## [5] chr1 96813273-96823738 + | 58155
## ... ... ... ... . ...
## [263] chrX 140774403-140793215 + | 286411
## [264] chrX 73841382-73851592 - | 7503
## [265] chrX 73841382-73852723 - | 7503
## [266] chrX 132369317-132379677 - | 55796
## [267] chrX 138614731-138632986 - | 2258
## -------
## seqinfo: 25 sequences (1 circular) from hg38 genome
and of course more scientifically relevant questions.
exonsBy()
, transcriptsBy()
, etcThe ensembldb package provides access to similar, but more rich,
information from Ensembl, with most data resources available via
AnnotationHub; the AnnotationHub query asks for records that
include both EnsDb
and a particular Ensembl release.
library(ensembldb)
query(AnnotationHub(), c("^EnsDb\\.", "Ensembl 96"))
## snapshotDate(): 2019-05-02
## AnnotationHub with 0 records
## # snapshotDate(): 2019-05-02
library(biomaRt)
Visit the biomart website and figure out how to browse data to retrieve, e.g., genes on chromosomes 21 and 22. You’ll need to browse to the ensembl mart, Homo spaiens data set, establish filters for chromosomes 21 and 22, and then specify that you’d like the Ensembl gene id attribute returned.
Now do the same process in biomaRt:
library(biomaRt)
head(listMarts(), 3) ## list marts
head(listDatasets(useMart("ensembl")), 3) ## mart datasets
ensembl <- ## fully specified mart
useMart("ensembl", dataset = "hsapiens_gene_ensembl")
head(listFilters(ensembl), 3) ## filters
myFilter <- "chromosome_name"
substr(filterOptions(myFilter, ensembl), 1, 50) ## return values
myValues <- c("21", "22")
head(listAttributes(ensembl), 3) ## attributes
myAttributes <- c("ensembl_gene_id","chromosome_name")
## assemble and query the mart
res <- getBM(attributes = myAttributes, filters = myFilter,
values = myValues, mart = ensembl)
library(KEGGREST)
AnnotationHub provides a resource of annotations that are available without requiring an annotation package.
library(AnnotationHub)
ah <- AnnotationHub()
One example of such annotations are org
-style data resources for
less-model organisms. Discover available resources using the flexible
query()
command.
query(ah, "^org\\.")
## AnnotationHub with 1710 records
## # snapshotDate(): 2019-05-02
## # $dataprovider: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
## # $species: Escherichia coli, 'Chlorella vulgaris'_C-169, 'Klebsiella a...
## # $rdataclass: OrgDb
## # additional mcols(): taxonomyid, genome, description,
## # coordinate_1_based, maintainer, rdatadateadded, preparerclass,
## # tags, rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH70563"]]'
##
## title
## AH70563 | org.Ag.eg.db.sqlite
## AH70564 | org.At.tair.db.sqlite
## AH70565 | org.Bt.eg.db.sqlite
## AH70566 | org.Cf.eg.db.sqlite
## AH70567 | org.Gg.eg.db.sqlite
## ... ...
## AH73812 | org.Plasmodium_vivax.eg.sqlite
## AH73813 | org.Burkholderia_mallei_ATCC_23344.eg.sqlite
## AH73814 | org.Bacillus_cereus_(strain_ATCC_14579_|_DSM_31).eg.sqlite
## AH73815 | org.Bacillus_cereus_ATCC_14579.eg.sqlite
## AH73816 | org.Schizosaccharomyces_cryophilus_OY26.eg.sqlite
Find out more about a particular resource using [
to select just
that resource, or use mcols()
on a subset of resources. identifier,
e.g.,
ah["AH70563"]
## AnnotationHub with 1 record
## # snapshotDate(): 2019-05-02
## # names(): AH70563
## # $dataprovider: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
## # $species: Anopheles gambiae
## # $rdataclass: OrgDb
## # $rdatadateadded: 2019-04-29
## # $title: org.Ag.eg.db.sqlite
## # $description: NCBI gene ID based annotations about Anopheles gambiae
## # $taxonomyid: 180454
## # $genome: NCBI genomes
## # $sourcetype: NCBI/ensembl
## # $sourceurl: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/, ftp://ftp.ensembl....
## # $sourcesize: NA
## # $tags: c("NCBI", "Gene", "Annotation")
## # retrieve record with 'object[["AH70563"]]'
Retrieve and use a resource by using [[
with the corresponding
org <- ah[["AH70563"]]
## downloading 0 resources
## loading from cache
## 'AH70563 : 77309'
org
## OrgDb object:
## | DBSCHEMAVERSION: 2.1
## | Db type: OrgDb
## | Supporting package: AnnotationDbi
## | DBSCHEMA: ANOPHELES_DB
## | ORGANISM: Anopheles gambiae
## | SPECIES: Anopheles
## | EGSOURCEDATE: 2019-Apr26
## | EGSOURCENAME: Entrez Gene
## | EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
## | CENTRALID: EG
## | TAXID: 180454
## | GOSOURCENAME: Gene Ontology
## | GOSOURCEURL: ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-lite/
## | GOSOURCEDATE: 2019-Apr24
## | GOEGSOURCEDATE: 2019-Apr26
## | GOEGSOURCENAME: Entrez Gene
## | GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
## | KEGGSOURCENAME: KEGG GENOME
## | KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes
## | KEGGSOURCEDATE: 2011-Mar15
## | GPSOURCENAME: UCSC Genome Bioinformatics (Anopheles gambiae)
## | GPSOURCEURL:
## | GPSOURCEDATE: 2018-Oct2
## | ENSOURCEDATE: 2019-Apr08
## | ENSOURCENAME: Ensembl
## | ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta
##
## Please see: help('select') for usage information
Determine the central key, and the columns that can be mapped between
chooseCentralOrgPkgSymbol(org)
## [1] "ENTREZID"
columns(org)
## [1] "ACCNUM" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"
## [5] "ENTREZID" "ENZYME" "EVIDENCE" "EVIDENCEALL"
## [9] "GENENAME" "GO" "GOALL" "ONTOLOGY"
## [13] "ONTOLOGYALL" "PATH" "PMID" "REFSEQ"
## [17] "SYMBOL" "UNIGENE" "UNIPROT"
Here are some Entrez identifiers, and their corresponding symbols for
Anopheles gambiae, either allowing for 1:many maps (select()
) or
enforcing 1:1 maps. We use AnnotationDbi::select()
to disambiguate
between the select()
generic defined in AnnotationDbi
and the
select()
generic defined in dplyr
: theses methods have
incompatible signatures and ‘contracts’, and so must be invoked in a
way that resolves our intention explicitly.
library(dplyr) # for `%>%`
eid <- head(keys(org))
AnnotationDbi::select(org, eid, "SYMBOL", "ENTREZID")
## 'select()' returned 1:1 mapping between keys and columns
## ENTREZID SYMBOL
## 1 1267437 AgaP_AGAP012606
## 2 1267439 AgaP_AGAP012559
## 3 1267440 AgaP_AGAP012558
## 4 1267447 AgaP_AGAP012586
## 5 1267450 AgaP_AGAP012834
## 6 1267459 AgaP_AGAP012589
eid %>%
mapIds(x = org, "SYMBOL", "ENTREZID") %>%
tibble::enframe("ENTREZID", "SYMBOL")
## 'select()' returned 1:1 mapping between keys and columns
## # A tibble: 6 x 2
## ENTREZID SYMBOL
## <chr> <chr>
## 1 1267437 AgaP_AGAP012606
## 2 1267439 AgaP_AGAP012559
## 3 1267440 AgaP_AGAP012558
## 4 1267447 AgaP_AGAP012586
## 5 1267450 AgaP_AGAP012834
## 6 1267459 AgaP_AGAP012589
ExperimentHub is analogous to AnnotationHub, but contains curated experimental results. Increasingly, ExperimentHub packages are provided to document and ease access to these resources. A great example of an ExperimentHub package is [curatedTCGAData][].
library(ExperimentHub)
library(curatedTCGAData)
The [curatedTCGAData][] package provides an interface to a collection
of resources available through ExperimentHub. The interface is
straigth-forward. Use curatedTCGAData()
to discover available types
of data, choosing assay types after identifying cancer types.
curatedTCGAData()
## Please see the list below for available cohorts and assays
## Available Cancer codes:
## ACC BLCA BRCA CESC CHOL COAD DLBC ESCA GBM HNSC KICH
## KIRC KIRP LAML LGG LIHC LUAD LUSC MESO OV PAAD PCPG
## PRAD READ SARC SKCM STAD TGCT THCA THYM UCEC UCS UVM
## Available Data Types:
## CNACGH CNACGH_CGH_hg_244a
## CNACGH_CGH_hg_415k_g4124a CNASeq CNASNP
## CNVSNP GISTIC_AllByGene GISTIC_Peaks
## GISTIC_ThresholdedByGene Methylation
## Methylation_methyl27 Methylation_methyl450
## miRNAArray miRNASeqGene mRNAArray
## mRNAArray_huex mRNAArray_TX_g4502a
## mRNAArray_TX_g4502a_1
## mRNAArray_TX_ht_hg_u133a Mutation
## RNASeq2GeneNorm RNASeqGene RPPAArray
curatedTCGAData("BRCA")
## Title DispatchClass
## 31 BRCA_CNASeq-20160128 Rda
## 32 BRCA_CNASNP-20160128 Rda
## 33 BRCA_CNVSNP-20160128 Rda
## 35 BRCA_GISTIC_AllByGene-20160128 Rda
## 36 BRCA_GISTIC_Peaks-20160128 Rda
## 37 BRCA_GISTIC_ThresholdedByGene-20160128 Rda
## 39 BRCA_Methylation_methyl27-20160128_assays H5File
## 40 BRCA_Methylation_methyl27-20160128_se Rds
## 41 BRCA_Methylation_methyl450-20160128_assays H5File
## 42 BRCA_Methylation_methyl450-20160128_se Rds
## 43 BRCA_miRNASeqGene-20160128 Rda
## 44 BRCA_mRNAArray-20160128 Rda
## 45 BRCA_Mutation-20160128 Rda
## 46 BRCA_RNASeq2GeneNorm-20160128 Rda
## 47 BRCA_RNASeqGene-20160128 Rda
## 48 BRCA_RPPAArray-20160128 Rda
curatedTCGAData("BRCA", c("RNASeqGene", "CNVSNP"))
## Title DispatchClass
## 33 BRCA_CNVSNP-20160128 Rda
## 47 BRCA_RNASeqGene-20160128 Rda
Adding dry.run = FALSE
triggers the actual download (first time
only) of the data from ExperimentHub, and presentation to the user as
a MultiAssayExperiment
.
mae <- curatedTCGAData("BRCA", c("RNASeqGene", "CNVSNP"), dry.run=FALSE)
mae
## A MultiAssayExperiment object of 2 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 2:
## [1] BRCA_CNVSNP-20160128: RaggedExperiment with 284458 rows and 2199 columns
## [2] BRCA_RNASeqGene-20160128: SummarizedExperiment with 20502 rows and 878 columns
## Features:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample availability DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
It is then easy to work with these data, via individual assays or in a more integrative analysis. For example, the distribution of library sizes in the RNASeq data can be visualized with.
mae[["BRCA_RNASeqGene-20160128"]] %>%
assay() %>%
colSums() %>%
density() %>%
plot(main = "TCGA BRCA RNASeq Library Size")
library(VariantAnnotation)
library(ensemblVEP)
sessionInfo()
## R version 3.6.0 Patched (2019-04-26 r76431)
## Platform: x86_64-apple-darwin17.7.0 (64-bit)
## Running under: macOS High Sierra 10.13.6
##
## Matrix products: default
## BLAS: /Users/ma38727/bin/R-3-6-branch/lib/libRblas.dylib
## LAPACK: /Users/ma38727/bin/R-3-6-branch/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] ensemblVEP_1.27.0
## [2] VariantAnnotation_1.31.3
## [3] Rsamtools_2.1.2
## [4] Biostrings_2.53.0
## [5] XVector_0.25.0
## [6] RaggedExperiment_1.9.0
## [7] curatedTCGAData_1.7.0
## [8] MultiAssayExperiment_1.11.4
## [9] SummarizedExperiment_1.15.5
## [10] DelayedArray_0.11.2
## [11] BiocParallel_1.19.0
## [12] matrixStats_0.54.0
## [13] ExperimentHub_1.11.1
## [14] KEGGREST_1.25.0
## [15] biomaRt_2.41.3
## [16] ensembldb_2.9.2
## [17] AnnotationFilter_1.9.0
## [18] TxDb.Hsapiens.UCSC.hg38.knownGene_3.4.6
## [19] GenomicFeatures_1.37.3
## [20] GenomicRanges_1.37.14
## [21] GenomeInfoDb_1.21.1
## [22] dplyr_0.8.2
## [23] GO.db_3.8.2
## [24] org.Hs.eg.db_3.8.2
## [25] AnnotationDbi_1.47.0
## [26] IRanges_2.19.10
## [27] S4Vectors_0.23.17
## [28] Biobase_2.45.0
## [29] AnnotationHub_2.17.3
## [30] BiocFileCache_1.9.1
## [31] dbplyr_1.4.2
## [32] BiocGenerics_0.31.4
## [33] BiocStyle_2.13.2
##
## loaded via a namespace (and not attached):
## [1] httr_1.4.0 bit64_0.9-7
## [3] shiny_1.3.2 assertthat_0.2.1
## [5] interactiveDisplayBase_1.23.0 BiocManager_1.30.5.1
## [7] blob_1.1.1 BSgenome_1.53.0
## [9] GenomeInfoDbData_1.2.1 yaml_2.2.0
## [11] progress_1.2.2 lattice_0.20-38
## [13] pillar_1.4.2 RSQLite_2.1.1
## [15] backports_1.1.4 glue_1.3.1
## [17] digest_0.6.19 promises_1.0.1
## [19] htmltools_0.3.6 httpuv_1.5.1
## [21] Matrix_1.2-17 XML_3.98-1.20
## [23] pkgconfig_2.0.2 bookdown_0.11
## [25] zlibbioc_1.31.0 purrr_0.3.2
## [27] xtable_1.8-4 later_0.8.0
## [29] tibble_2.1.3 lazyeval_0.2.2
## [31] cli_1.1.0 magrittr_1.5
## [33] crayon_1.3.4 mime_0.7
## [35] memoise_1.1.0 evaluate_0.14
## [37] fansi_0.4.0 tools_3.6.0
## [39] prettyunits_1.0.2 hms_0.4.2
## [41] stringr_1.4.0 compiler_3.6.0
## [43] rlang_0.4.0 grid_3.6.0
## [45] RCurl_1.95-4.12 rappdirs_0.3.1
## [47] bitops_1.0-6 rmarkdown_1.13
## [49] codetools_0.2-16 DBI_1.0.0
## [51] curl_3.3 R6_2.4.0
## [53] GenomicAlignments_1.21.4 knitr_1.23
## [55] rtracklayer_1.45.1 bit_1.1-14
## [57] utf8_1.1.4 zeallot_0.1.0
## [59] ProtGenerics_1.17.2 stringi_1.4.3
## [61] Rcpp_1.0.1 png_0.1-7
## [63] vctrs_0.1.0 tidyselect_0.2.5
## [65] xfun_0.8