Bioconductor: Analysis and comprehension of high-throughput genomic data
Packages, vignettes, work flows
Package installation and use
A package needs to be installed once, using the instructions on the package landing page (e.g., DESeq2).
source("https://bioconductor.org/biocLite.R")
biocLite(c("DESeq2", "org.Hs.eg.db"))
biocLite()
installs Bioconductor, CRAN, and github packages.
Once installed, the package can be loaded into an R session
library(GenomicRanges)
and the help system queried interactively, as outlined above:
help(package="GenomicRanges")
vignette(package="GenomicRanges")
vignette(package="GenomicRanges", "GenomicRangesHOWTOs")
?GRanges
Goals
What a few lines of R has to say
x <- rnorm(1000)
y <- x + rnorm(1000)
df <- data.frame(X=x, Y=y)
plot(Y ~ X, df)
fit <- lm(Y ~ X, df)
anova(fit)
## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## X 1 966.02 966.02 1039.9 < 2.2e-16 ***
## Residuals 998 927.12 0.93
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
abline(fit)
Classes and methods – “S3”
data.frame()
Creates an instance or object
plot()
, lm()
, anova()
, abline()
: methods defined on generics to transform instances
Discovery and help
class(fit)
methods(class=class(fit))
methods(plot)
?"plot"
?"plot.formula"
tab completion!
Bioconductor classes and methods – “S4”
Example: working with DNA sequences
library(Biostrings)
dna <- DNAStringSet(c("AACAT", "GGCGCCT"))
reverseComplement(dna)
## A DNAStringSet instance of length 2
## width seq
## [1] 5 ATGTT
## [2] 7 AGGCGCC
Discovery and help
class(dna)
?"DNAStringSet-class"
?"reverseComplement,DNAStringSet-method"
Experimental design
Wet-lab sequence preparation (figure from http://rnaseq.uoregon.edu/)
(Illumina) Sequencing (Bentley et al., 2008, doi:10.1038/nature07517)
library(Biostrings)
data(phiX174Phage)
phiX174Phage
## A DNAStringSet instance of length 6
## width seq names
## [1] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAAC...TTCGATAAAAATGATTGGCGTATCCAACCTGCA Genbank
## [2] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAAC...TTCGATAAAAATGATTGGCGTATCCAACCTGCA RF70s
## [3] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAAC...TTCGATAAAAATGATTGGCGTATCCAACCTGCA SS78
## [4] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAAC...TTCGATAAAAATGATTGGCGTATCCAACCTGCA Bull
## [5] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAAC...TTCGATAAAAATGATTGGCGTATCCAACCTGCA G97
## [6] 5386 GAGTTTTATCGCTTCCATGACGCAGAAGTTAAC...TTCGATAAAAATGATTGGCGTATCCAACCTGCA NEB03
letterFrequency(phiX174Phage, c("A", "C", "G", "T"))
## A C G T
## [1,] 1291 1157 1254 1684
## [2,] 1292 1156 1253 1685
## [3,] 1292 1156 1253 1685
## [4,] 1292 1155 1253 1686
## [5,] 1292 1156 1253 1685
## [6,] 1292 1155 1253 1686
letterFrequency(phiX174Phage, "GC", as.prob=TRUE)
## G|C
## [1,] 0.4476420
## [2,] 0.4472707
## [3,] 0.4472707
## [4,] 0.4470850
## [5,] 0.4472707
## [6,] 0.4470850
GRanges()
: genomic coordinates to represent annotations (exons, genes, regulatory marks, …) and data (called peaks, variants, aligned reads)
GRangesList()
: genomic coordinates grouped into list elements (e.g., paired-end reads; exons grouped by transcript)
Operations
shift()
GRanges
object or GRangesList
element
reduce()
; disjoin()
GRanges
or GRangesList
objects
findOverlaps()
, nearest()
library(GenomicRanges)
gr <- GRanges("A", IRanges(c(10, 20, 22), width=5), "+")
shift(gr, 1) # intra-range
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] A [11, 15] +
## [2] A [21, 25] +
## [3] A [23, 27] +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
range(gr) # inter-range
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] A [10, 26] +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
reduce(gr) # inter-range
## GRanges object with 2 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] A [10, 14] +
## [2] A [20, 26] +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
snps <- GRanges("A", IRanges(c(11, 17, 24), width=1))
findOverlaps(snps, gr) # between-range
## Hits object with 3 hits and 0 metadata columns:
## queryHits subjectHits
## <integer> <integer>
## [1] 1 1
## [2] 3 2
## [3] 3 3
## -------
## queryLength: 3 / subjectLength: 3
setdiff(range(gr), gr) # 'introns'
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] A [15, 19] +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
The airway experiment data package summarizes an RNA-seq experiment investigating human smooth-muscle airway cell lines treated with dexamethasone. Load the library and data set.
library(airway)
data(airway)
airway
## class: RangedSummarizedExperiment
## dim: 64102 8
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowData names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
airway
is an example of the SummarizedExperiment class. Explore its assay()
(the matrix of counts of reads overlapping genomic regions of interest in each sample), colData()
(a description of each sample), and rowRanges()
(a description of each region of interest; here each region is an ENSEMBL gene).
x <- assay(airway)
class(x)
## [1] "matrix"
dim(x)
## [1] 64102 8
head(x)
## SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520
## ENSG00000000003 679 448 873 408 1138 1047 770
## ENSG00000000005 0 0 0 0 0 0 0
## ENSG00000000419 467 515 621 365 587 799 417
## ENSG00000000457 260 211 263 164 245 331 233
## ENSG00000000460 60 55 40 35 78 63 76
## ENSG00000000938 0 0 2 0 1 0 0
## SRR1039521
## ENSG00000000003 572
## ENSG00000000005 0
## ENSG00000000419 508
## ENSG00000000457 229
## ENSG00000000460 60
## ENSG00000000938 0
colData(airway)
## DataFrame with 8 rows and 9 columns
## SampleName cell dex albut Run avgLength Experiment Sample
## <factor> <factor> <factor> <factor> <factor> <integer> <factor> <factor>
## SRR1039508 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS508568
## SRR1039509 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS508567
## SRR1039512 GSM1275866 N052611 untrt untrt SRR1039512 126 SRX384349 SRS508571
## SRR1039513 GSM1275867 N052611 trt untrt SRR1039513 87 SRX384350 SRS508572
## SRR1039516 GSM1275870 N080611 untrt untrt SRR1039516 120 SRX384353 SRS508575
## SRR1039517 GSM1275871 N080611 trt untrt SRR1039517 126 SRX384354 SRS508576
## SRR1039520 GSM1275874 N061011 untrt untrt SRR1039520 101 SRX384357 SRS508579
## SRR1039521 GSM1275875 N061011 trt untrt SRR1039521 98 SRX384358 SRS508580
## BioSample
## <factor>
## SRR1039508 SAMN02422669
## SRR1039509 SAMN02422675
## SRR1039512 SAMN02422678
## SRR1039513 SAMN02422670
## SRR1039516 SAMN02422682
## SRR1039517 SAMN02422673
## SRR1039520 SAMN02422683
## SRR1039521 SAMN02422677
rowRanges(airway)
## GRangesList object of length 64102:
## $ENSG00000000003
## GRanges object with 17 ranges and 2 metadata columns:
## seqnames ranges strand | exon_id exon_name
## <Rle> <IRanges> <Rle> | <integer> <character>
## [1] X [99883667, 99884983] - | 667145 ENSE00001459322
## [2] X [99885756, 99885863] - | 667146 ENSE00000868868
## [3] X [99887482, 99887565] - | 667147 ENSE00000401072
## [4] X [99887538, 99887565] - | 667148 ENSE00001849132
## [5] X [99888402, 99888536] - | 667149 ENSE00003554016
## ... ... ... ... . ... ...
## [13] X [99890555, 99890743] - | 667156 ENSE00003512331
## [14] X [99891188, 99891686] - | 667158 ENSE00001886883
## [15] X [99891605, 99891803] - | 667159 ENSE00001855382
## [16] X [99891790, 99892101] - | 667160 ENSE00001863395
## [17] X [99894942, 99894988] - | 667161 ENSE00001828996
##
## ...
## <64101 more elements>
## -------
## seqinfo: 722 sequences (1 circular) from an unspecified genome
It’s easy to subset a SummarizedExperiment on rows, columns and assays, e.g., retaining just those samples in the trt
level of the dex
factor. Accessing elements of the column data is common, so there is a short-cut.
cidx <- colData(airway)$dex %in% "trt"
airway[, cidx]
## class: RangedSummarizedExperiment
## dim: 64102 4
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowData names(0):
## colnames(4): SRR1039509 SRR1039513 SRR1039517 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
## shortcut
airway[, airway$dex %in% "trt"]
## class: RangedSummarizedExperiment
## dim: 64102 4
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowData names(0):
## colnames(4): SRR1039509 SRR1039513 SRR1039517 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
It’s also easy to perform range-based operations on SummarizedExperiment
objects, e.g., querying for range of chromosome 14 and then subsetting to contain only genes on this chromosome. Range operations on rows are very common, so there are shortcuts here, too.
chr14 <- as(seqinfo(rowRanges(airway)), "GRanges")["14"]
ridx <- rowRanges(airway) %over% chr14
airway[ridx,]
## class: RangedSummarizedExperiment
## dim: 2244 8
## metadata(1): ''
## assays(1): counts
## rownames(2244): ENSG00000006432 ENSG00000009830 ... ENSG00000273259 ENSG00000273307
## rowData names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
## shortcut
chr14 <- as(seqinfo(airway), "GRanges")["14"]
airway[airway %over% chr14,]
## class: RangedSummarizedExperiment
## dim: 2244 8
## metadata(1): ''
## assays(1): counts
## rownames(2244): ENSG00000006432 ENSG00000009830 ... ENSG00000273259 ENSG00000273307
## rowData names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
Use the assay()
and rowSums()
function to remove all rows from the airway
object that have 0 reads overlapping all samples. Summarize the library size (column sums of assay()
) and plot a histogram of the distribution of reads per feature of interest.
Genome annotations: BED, WIG, GTF, etc. files. E.g., GTF:
Component coordinates
7 protein_coding gene 27221129 27224842 . - . ...
...
7 protein_coding transcript 27221134 27224835 . - . ...
7 protein_coding exon 27224055 27224835 . - . ...
7 protein_coding CDS 27224055 27224763 . - 0 ...
7 protein_coding start_codon 27224761 27224763 . - 0 ...
7 protein_coding exon 27221134 27222647 . - . ...
7 protein_coding CDS 27222418 27222647 . - 2 ...
7 protein_coding stop_codon 27222415 27222417 . - 0 ...
7 protein_coding UTR 27224764 27224835 . - . ...
7 protein_coding UTR 27221134 27222414 . - . ...
Annotations
gene_id "ENSG00000005073"; gene_name "HOXA11"; gene_source "ensembl_havana"; gene_biotype "protein_coding";
...
... transcript_id "ENST00000006015"; transcript_name "HOXA11-001"; transcript_source "ensembl_havana"; tag "CCDS"; ccds_id "CCDS5411";
... exon_number "1"; exon_id "ENSE00001147062";
... exon_number "1"; protein_id "ENSP00000006015";
... exon_number "1";
... exon_number "2"; exon_id "ENSE00002099557";
... exon_number "2"; protein_id "ENSP00000006015";
... exon_number "2";
...
import()
: import various formats to GRanges
and similar instancesexport()
: transform from GRanges
and similar types to BED, GTF, …Sequenced reads: FASTQ files
@ERR127302.1703 HWI-EAS350_0441:1:1:1460:19184#0/1
CCTGAGTGAAGCTGATCTTGATCTACGAAGAGAGATAGATCTTGATCGTCGAGGAGATGCTGACCTTGACCT
+
HHGHHGHHHHHHHHDGG<GDGGE@GDGGD<?B8??ADAD<BE@EE8EGDGA3CB85*,77@>>CE?=896=:
@ERR127302.1704 HWI-EAS350_0441:1:1:1460:16861#0/1
GCGGTATGCTGGAAGGTGCTCGAATGGAGAGCGCCAGCGCCCCGGCGCTGAGCCGCAGCCTCAGGTCCGCCC
+
DE?DD>ED4>EEE>DE8EEEDE8B?EB<@3;BA79?,881B?@73;1?########################
readFastq()
: inputFastqStreamer()
: iterate through FASTQ filesFastqSampler()
: sample from FASTQ files, e.g., for quality assessmentAligned reads: BAM files
Header
@HD VN:1.0 SO:coordinate
@SQ SN:chr1 LN:249250621
@SQ SN:chr10 LN:135534747
@SQ SN:chr11 LN:135006516
...
@SQ SN:chrY LN:59373566
@PG ID:TopHat VN:2.0.8b CL:/home/hpages/tophat-2.0.8b.Linux_x86_64/tophat --mate-inner-dist 150 --solexa-quals --max-multihits 5 --no-discordant --no-mixed --coverage-search --microexon-search --library-type fr-unstranded --num-threads 2 --output-dir tophat2_out/ERR127306 /home/hpages/bowtie2-2.1.0/indexes/hg19 fastq/ERR127306_1.fastq fastq/ERR127306_2.fastq
Alignments: ID, flag, alignment and mate
ERR127306.7941162 403 chr14 19653689 3 72M = 19652348 -1413 ...
ERR127306.22648137 145 chr14 19653692 1 72M = 19650044 -3720 ...
ERR127306.933914 339 chr14 19653707 1 66M120N6M = 19653686 -213 ...
Alignments: sequence and quality
... GAATTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCC *'%%%%%#&&%''#'&%%%)&&%%$%%'%%'&*****$))$)'')'%)))&)%%%%$'%%%%&"))'')%))
... TTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAG '**)****)*'*&*********('&)****&***(**')))())%)))&)))*')&***********)****
... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT '******&%)&)))&")')'')'*((******&)&'')'))$))'')&))$)**&&****************
Alignments: Tags
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:72 YT:Z:UU NH:i:2 CC:Z:chr22 CP:i:16189276 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:72 YT:Z:UU NH:i:3 CC:Z:= CP:i:19921600 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:4 MD:Z:72 YT:Z:UU XS:A:+ NH:i:3 CC:Z:= CP:i:19921465 HI:i:0
... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:4 MD:Z:72 YT:Z:UU XS:A:+ NH:i:2 CC:Z:chr22 CP:i:16189138 HI:i:0
[GenomicAligments][]
readGAlignments()
: Single-end readsreadGAlignmentPairs()
, readGAlignmentsList()
: paired end readsWorking with large files
ScanBamParam()
: restrict inputBamFile(, yieldSize=)
: iterationreduceByYield()
The [RNAseqData.HNRNPC.bam.chr14][] package is an example of an experiment data package. It contains a subset of BAM files used in a gene knock-down experiment, as described in ?RNAseqData.HNRNPC.bam.chr14
. Load the package and get the path to the BAM files.
library(RNAseqData.HNRNPC.bam.chr14)
fls = RNAseqData.HNRNPC.bam.chr14_BAMFILES
basename(fls)
## [1] "ERR127306_chr14.bam" "ERR127307_chr14.bam" "ERR127308_chr14.bam" "ERR127309_chr14.bam"
## [5] "ERR127302_chr14.bam" "ERR127303_chr14.bam" "ERR127304_chr14.bam" "ERR127305_chr14.bam"
Create BamFileList()
, basically telling R that these are paths to BAM files rather than, say, text files from a spreadsheet.
library(GenomicAlignments)
bfls = BamFileList(fls)
bfl = bfls[[1]]
Input and explore the aligments. See ?readGAlignments
and ?GAlignments
for details on how to manipulate these objects.
ga = readGAlignments(bfl)
ga
## GAlignments object with 800484 alignments and 0 metadata columns:
## seqnames strand cigar qwidth start end width njunc
## <Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>
## [1] chr14 + 72M 72 19069583 19069654 72 0
## [2] chr14 + 72M 72 19363738 19363809 72 0
## [3] chr14 - 72M 72 19363755 19363826 72 0
## [4] chr14 + 72M 72 19369799 19369870 72 0
## [5] chr14 - 72M 72 19369828 19369899 72 0
## ... ... ... ... ... ... ... ... ...
## [800480] chr14 - 72M 72 106989780 106989851 72 0
## [800481] chr14 + 72M 72 106994763 106994834 72 0
## [800482] chr14 - 72M 72 106994819 106994890 72 0
## [800483] chr14 + 72M 72 107003080 107003151 72 0
## [800484] chr14 - 72M 72 107003171 107003242 72 0
## -------
## seqinfo: 93 sequences from an unspecified genome
table(strand(ga))
##
## + - *
## 400242 400242 0
Many of the reads have cigar “72M”. What does this mean? Can you create a subset of reads that do not have this cigar? Interpret some of the non-72M cigars. Any hint about what these cigars represent?
tail(sort(table(cigar(ga))))
##
## 18M123N54M 36M123N36M 64M316N8M 38M670N34M 35M123N37M 72M
## 225 228 261 264 272 603939
ga[cigar(ga) != "72M"]
## GAlignments object with 196545 alignments and 0 metadata columns:
## seqnames strand cigar qwidth start end width njunc
## <Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>
## [1] chr14 - 64M1I7M 72 19411677 19411747 71 0
## [2] chr14 + 55M2117N17M 72 19650072 19652260 2189 1
## [3] chr14 - 43M2117N29M 72 19650084 19652272 2189 1
## [4] chr14 - 40M2117N32M 72 19650087 19652275 2189 1
## [5] chr14 + 38M2117N34M 72 19650089 19652277 2189 1
## ... ... ... ... ... ... ... ... ...
## [196541] chr14 - 51M1D21M 72 106950429 106950501 73 0
## [196542] chr14 + 31M1I40M 72 106960410 106960480 71 0
## [196543] chr14 + 52M1D20M 72 106965156 106965228 73 0
## [196544] chr14 - 13M1D59M 72 106965195 106965267 73 0
## [196545] chr14 - 6M1D66M 72 106965202 106965274 73 0
## -------
## seqinfo: 93 sequences from an unspecified genome
Use the function summarizeJunctions()
to identify genomic regions that are spanned by reads with complicated cigars. Can you use the argument with.revmap=TRUE
to extract the reads supporting a particular (e.g., first) junction?
summarizeJunctions(ga)
## GRanges object with 4635 ranges and 3 metadata columns:
## seqnames ranges strand | score plus_score minus_score
## <Rle> <IRanges> <Rle> | <integer> <integer> <integer>
## [1] chr14 [19650127, 19652243] * | 4 2 2
## [2] chr14 [19650127, 19653624] * | 1 1 0
## [3] chr14 [19652355, 19653624] * | 8 7 1
## [4] chr14 [19652355, 19653657] * | 1 1 0
## [5] chr14 [19653773, 19653892] * | 9 5 4
## ... ... ... ... . ... ... ...
## [4631] chr14 [106912703, 106922227] * | 1 0 1
## [4632] chr14 [106938165, 106938301] * | 10 2 8
## [4633] chr14 [106938645, 106944774] * | 24 7 17
## [4634] chr14 [106944969, 106950170] * | 7 6 1
## [4635] chr14 [106950323, 106960260] * | 1 1 0
## -------
## seqinfo: 93 sequences from an unspecified genome
junctions <- summarizeJunctions(ga, with.revmap=TRUE)
ga[ junctions$revmap[[1]] ]
## GAlignments object with 4 alignments and 0 metadata columns:
## seqnames strand cigar qwidth start end width njunc
## <Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>
## [1] chr14 + 55M2117N17M 72 19650072 19652260 2189 1
## [2] chr14 - 43M2117N29M 72 19650084 19652272 2189 1
## [3] chr14 - 40M2117N32M 72 19650087 19652275 2189 1
## [4] chr14 + 38M2117N34M 72 19650089 19652277 2189 1
## -------
## seqinfo: 93 sequences from an unspecified genome
It is possible to do other actions on BAM files, e.g., calculating the ‘coverage’ (reads overlapping each base).
coverage(bfl)$chr14
## integer-Rle of length 107349540 with 493510 runs
## Lengths: 19069582 72 294083 17 55 ... 72 19 72 346298
## Values : 0 1 0 1 2 ... 1 0 1 0
Header
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
...
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
...
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
Location
#CHROM POS ID REF ALT QUAL FILTER ...
20 14370 rs6054257 G A 29 PASS ...
20 17330 . T A 3 q10 ...
20 1110696 rs6040355 A G,T 67 PASS ...
Variant INFO
#CHROM POS ... INFO ...
20 14370 ... NS=3;DP=14;AF=0.5;DB;H2 ...
20 17330 ... NS=3;DP=11;AF=0.017 ...
20 1110696 ... NS=2;DP=10;AF=0.333,0.667;AA=T;DB ...
Genotype FORMAT and samples
... POS ... FORMAT NA00001 NA00002 NA00003
... 14370 ... GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
... 17330 ... GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
... 1110696 ... GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
readVcf()
: VCF inputScanVcfParam()
: restrict input to necessary fields / rangesVcfFile()
: indexing and iterating through large VCF fileslocateVariants()
: annotate in relation to genes, etc; see also ensemblVEP, VariantFilteringfilterVcf()
: flexible filtering