Back to Multiple platform build/check report for BioC 3.9
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

CHECK report for BufferedMatrix on tokay2

This page was generated on 2019-10-16 12:21:04 -0400 (Wed, 16 Oct 2019).

Package 193/1741HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.48.0
Ben Bolstad
Snapshot Date: 2019-10-15 17:01:26 -0400 (Tue, 15 Oct 2019)
URL: https://git.bioconductor.org/packages/BufferedMatrix
Branch: RELEASE_3_9
Last Commit: 5368d45
Last Changed Date: 2019-05-02 11:53:07 -0400 (Thu, 02 May 2019)
malbec2 Linux (Ubuntu 18.04.2 LTS) / x86_64  OK  OK  OK UNNEEDED, same version exists in internal repository
tokay2 Windows Server 2012 R2 Standard / x64  OK  OK [ OK ] OK UNNEEDED, same version exists in internal repository
celaya2 OS X 10.11.6 El Capitan / x86_64  OK  OK  OK  OK UNNEEDED, same version exists in internal repository

Summary

Package: BufferedMatrix
Version: 1.48.0
Command: C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:BufferedMatrix.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings BufferedMatrix_1.48.0.tar.gz
StartedAt: 2019-10-16 02:21:31 -0400 (Wed, 16 Oct 2019)
EndedAt: 2019-10-16 02:22:36 -0400 (Wed, 16 Oct 2019)
EllapsedTime: 65.1 seconds
RetCode: 0
Status:  OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:BufferedMatrix.install-out.txt --library=C:\Users\biocbuild\bbs-3.9-bioc\R\library --no-vignettes --timings BufferedMatrix_1.48.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck'
* using R version 3.6.1 (2019-07-05)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'BufferedMatrix/DESCRIPTION' ... OK
* this is package 'BufferedMatrix' version '1.48.0'
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'BufferedMatrix' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* loading checks for arch 'i386'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* loading checks for arch 'x64'
** checking whether the package can be loaded ... OK
** checking whether the package can be loaded with stated dependencies ... OK
** checking whether the package can be unloaded cleanly ... OK
** checking whether the namespace can be loaded with stated dependencies ... OK
** checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files for i386 is not available
Note: information on .o files for x64 is not available
File 'C:/Users/biocbuild/bbs-3.9-bioc/R/library/BufferedMatrix/libs/i386/BufferedMatrix.dll':
  Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran)
File 'C:/Users/biocbuild/bbs-3.9-bioc/R/library/BufferedMatrix/libs/x64/BufferedMatrix.dll':
  Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran)

Compiled code should not call entry points which might terminate R nor
write to stdout/stderr instead of to the console, nor use Fortran I/O
nor system RNGs. The detected symbols are linked into the code but
might come from libraries and not actually be called.

See 'Writing portable packages' in the 'Writing R Extensions' manual.
* checking files in 'vignettes' ... OK
* checking examples ... NONE
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
** running tests for arch 'i386' ...
  Running 'Rcodetesting.R'
  Running 'c_code_level_tests.R'
  Running 'objectTesting.R'
  Running 'rawCalltesting.R'
 OK
** running tests for arch 'x64' ...
  Running 'Rcodetesting.R'
  Running 'c_code_level_tests.R'
  Running 'objectTesting.R'
  Running 'rawCalltesting.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/00check.log'
for details.



Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   C:\cygwin\bin\curl.exe -O https://malbec2.bioconductor.org/BBS/3.9/bioc/src/contrib/BufferedMatrix_1.48.0.tar.gz && rm -rf BufferedMatrix.buildbin-libdir && mkdir BufferedMatrix.buildbin-libdir && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=BufferedMatrix.buildbin-libdir BufferedMatrix_1.48.0.tar.gz && C:\Users\biocbuild\bbs-3.9-bioc\R\bin\R.exe CMD INSTALL BufferedMatrix_1.48.0.zip && rm BufferedMatrix_1.48.0.tar.gz BufferedMatrix_1.48.0.zip
###
##############################################################################
##############################################################################


  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed

  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100  201k  100  201k    0     0  1245k      0 --:--:-- --:--:-- --:--:-- 1298k

install for i386

* installing *source* package 'BufferedMatrix' ...
** using staged installation
** libs
C:/Rtools/mingw_32/bin/gcc  -I"C:/Users/BIOCBU~1/BBS-3~1.9-B/R/include" -DNDEBUG     -I"C:/extsoft/include"     -O3 -Wall  -std=gnu99 -mtune=generic -c RBufferedMatrix.c -o RBufferedMatrix.o
C:/Rtools/mingw_32/bin/gcc  -I"C:/Users/BIOCBU~1/BBS-3~1.9-B/R/include" -DNDEBUG     -I"C:/extsoft/include"     -O3 -Wall  -std=gnu99 -mtune=generic -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode':
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~' [-Wparentheses]
   if (!(Matrix->readonly) & setting){
       ^
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function]
 static int sort_double(const double *a1,const double *a2){
            ^
C:/Rtools/mingw_32/bin/gcc  -I"C:/Users/BIOCBU~1/BBS-3~1.9-B/R/include" -DNDEBUG     -I"C:/extsoft/include"     -O3 -Wall  -std=gnu99 -mtune=generic -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
C:/Rtools/mingw_32/bin/gcc  -I"C:/Users/BIOCBU~1/BBS-3~1.9-B/R/include" -DNDEBUG     -I"C:/extsoft/include"     -O3 -Wall  -std=gnu99 -mtune=generic -c init_package.c -o init_package.o
C:/Rtools/mingw_32/bin/gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/extsoft/lib/i386 -LC:/extsoft/lib -LC:/Users/BIOCBU~1/BBS-3~1.9-B/R/bin/i386 -lR
installing to C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.buildbin-libdir/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs/i386
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for 'rowMeans' in package 'BufferedMatrix'
Creating a new generic function for 'rowSums' in package 'BufferedMatrix'
Creating a new generic function for 'colMeans' in package 'BufferedMatrix'
Creating a new generic function for 'colSums' in package 'BufferedMatrix'
Creating a generic function for 'ncol' from package 'base' in package 'BufferedMatrix'
Creating a generic function for 'nrow' from package 'base' in package 'BufferedMatrix'
** help
*** installing help indices
  converting help for package 'BufferedMatrix'
    finding HTML links ... done
    BufferedMatrix-class                    html  
    as.BufferedMatrix                       html  
    createBufferedMatrix                    html  
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path

install for x64

* installing *source* package 'BufferedMatrix' ...
** libs
C:/Rtools/mingw_64/bin/gcc  -I"C:/Users/BIOCBU~1/BBS-3~1.9-B/R/include" -DNDEBUG     -I"C:/extsoft/include"     -O2 -Wall  -std=gnu99 -mtune=generic -c RBufferedMatrix.c -o RBufferedMatrix.o
C:/Rtools/mingw_64/bin/gcc  -I"C:/Users/BIOCBU~1/BBS-3~1.9-B/R/include" -DNDEBUG     -I"C:/extsoft/include"     -O2 -Wall  -std=gnu99 -mtune=generic -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function 'dbm_ReadOnlyMode':
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~' [-Wparentheses]
   if (!(Matrix->readonly) & setting){
       ^
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: 'sort_double' defined but not used [-Wunused-function]
 static int sort_double(const double *a1,const double *a2){
            ^
C:/Rtools/mingw_64/bin/gcc  -I"C:/Users/BIOCBU~1/BBS-3~1.9-B/R/include" -DNDEBUG     -I"C:/extsoft/include"     -O2 -Wall  -std=gnu99 -mtune=generic -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
C:/Rtools/mingw_64/bin/gcc  -I"C:/Users/BIOCBU~1/BBS-3~1.9-B/R/include" -DNDEBUG     -I"C:/extsoft/include"     -O2 -Wall  -std=gnu99 -mtune=generic -c init_package.c -o init_package.o
C:/Rtools/mingw_64/bin/gcc -shared -s -static-libgcc -o BufferedMatrix.dll tmp.def RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -LC:/extsoft/lib/x64 -LC:/extsoft/lib -LC:/Users/BIOCBU~1/BBS-3~1.9-B/R/bin/x64 -lR
installing to C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.buildbin-libdir/BufferedMatrix/libs/x64
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'BufferedMatrix' as BufferedMatrix_1.48.0.zip
* DONE (BufferedMatrix)
* installing to library 'C:/Users/biocbuild/bbs-3.9-bioc/R/library'
package 'BufferedMatrix' successfully unpacked and MD5 sums checked

Tests output

BufferedMatrix.Rcheck/tests_i386/c_code_level_tests.Rout


R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
   0.56    0.04    0.57 

BufferedMatrix.Rcheck/tests_x64/c_code_level_tests.Rout


R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
   0.50    0.10    0.61 

BufferedMatrix.Rcheck/tests_i386/objectTesting.Rout


R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 408056 12.5     849838   26   632071 19.3
Vcells 463676  3.6    8388608   64  1454215 11.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Oct 16 02:22:02 2019"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Oct 16 02:22:03 2019"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)

> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Oct 16 02:22:05 2019"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Oct 16 02:22:06 2019"
> 
> ColMode(tmp2)

> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]      [,4]
[1,] 100.4066299 -0.5506606  0.2058723 0.1999109
[2,]  -0.2621874 -0.3624380 -0.9164488 0.3066757
[3,]   2.0804476 -0.3679892 -0.8401530 0.2995073
[4,]  -0.1585063 -0.1177263 -0.7865227 0.5306903
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]      [,4]
[1,] 100.4066299 0.5506606 0.2058723 0.1999109
[2,]   0.2621874 0.3624380 0.9164488 0.3066757
[3,]   2.0804476 0.3679892 0.8401530 0.2995073
[4,]   0.1585063 0.1177263 0.7865227 0.5306903
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0203109 0.7420651 0.4537315 0.4471139
[2,]  0.5120424 0.6020282 0.9573133 0.5537831
[3,]  1.4423757 0.6066211 0.9165986 0.5472726
[4,]  0.3981285 0.3431127 0.8868611 0.7284849
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.60974 32.97131 29.74319 29.67105
[2,]  30.38261 31.38272 35.48958 30.84451
[3,]  41.50420 31.43420 35.00614 30.77223
[4,]  29.13979 28.54885 34.65513 32.81554
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)

> exp(tmp5)

> log(tmp5,2)

> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.5771
> Min(tmp5)
[1] 53.75224
> mean(tmp5)
[1] 72.28792
> Sum(tmp5)
[1] 14457.58
> Var(tmp5)
[1] 870.5949
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.83969 68.78245 71.83764 69.48594 71.36174 71.24699 70.11096 69.51445
 [9] 72.29990 68.39943
> rowSums(tmp5)
 [1] 1796.794 1375.649 1436.753 1389.719 1427.235 1424.940 1402.219 1390.289
 [9] 1445.998 1367.989
> rowVars(tmp5)
 [1] 8103.95653   73.70082   74.29810   82.40583   59.21376  100.22005
 [7]   66.06861   62.75426   81.27137   37.71039
> rowSd(tmp5)
 [1] 90.021978  8.584918  8.619635  9.077766  7.695048 10.010997  8.128260
 [8]  7.921758  9.015063  6.140878
> rowMax(tmp5)
 [1] 469.57711  87.30627  86.90799  89.38443  84.50875  98.41030  85.39286
 [8]  79.27917  88.04839  78.57167
> rowMin(tmp5)
 [1] 53.75224 54.02930 54.90862 58.17457 60.13160 54.78245 53.82198 55.51805
 [9] 60.46000 56.45756
> 
> colMeans(tmp5)
 [1] 107.93433  66.32285  70.99239  67.51147  73.44786  78.27234  71.67350
 [8]  68.51348  71.04995  70.87003  72.30067  66.12586  65.52881  74.46126
[15]  67.58245  66.70647  74.69351  69.54872  69.07154  73.15086
> colSums(tmp5)
 [1] 1079.3433  663.2285  709.9239  675.1147  734.4786  782.7234  716.7350
 [8]  685.1348  710.4995  708.7003  723.0067  661.2586  655.2881  744.6126
[15]  675.8245  667.0647  746.9351  695.4872  690.7154  731.5086
> colVars(tmp5)
 [1] 16201.75409    61.12270    41.93588    37.45995   140.29720   114.97181
 [7]   100.45230    47.82646    45.76978    83.59857    78.83226    57.25213
[13]    72.36045   101.57017    34.87793   113.46015    34.10971    56.48038
[19]    46.58712    54.52365
> colSd(tmp5)
 [1] 127.286111   7.818101   6.475792   6.120453  11.844712  10.722491
 [7]  10.022589   6.915668   6.765337   9.143225   8.878753   7.566514
[13]   8.506495  10.078203   5.905754  10.651768   5.840352   7.515343
[19]   6.825476   7.384013
> colMax(tmp5)
 [1] 469.57711  85.39286  78.82561  81.40158  98.41030  96.09250  87.26537
 [8]  84.15594  79.27917  82.57303  88.04839  78.89258  83.17082  86.90799
[15]  78.98772  89.38443  86.38916  81.85164  78.28629  83.15962
> colMin(tmp5)
 [1] 60.65066 55.71603 60.16564 60.03565 58.17457 61.58546 60.18254 59.85971
 [9] 59.44147 53.82198 53.75224 54.78245 56.45756 59.84856 60.53642 54.02930
[17] 68.04079 59.23594 55.51805 60.86853
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.83969 68.78245 71.83764 69.48594 71.36174       NA 70.11096 69.51445
 [9] 72.29990 68.39943
> rowSums(tmp5)
 [1] 1796.794 1375.649 1436.753 1389.719 1427.235       NA 1402.219 1390.289
 [9] 1445.998 1367.989
> rowVars(tmp5)
 [1] 8103.95653   73.70082   74.29810   82.40583   59.21376  105.75118
 [7]   66.06861   62.75426   81.27137   37.71039
> rowSd(tmp5)
 [1] 90.021978  8.584918  8.619635  9.077766  7.695048 10.283539  8.128260
 [8]  7.921758  9.015063  6.140878
> rowMax(tmp5)
 [1] 469.57711  87.30627  86.90799  89.38443  84.50875        NA  85.39286
 [8]  79.27917  88.04839  78.57167
> rowMin(tmp5)
 [1] 53.75224 54.02930 54.90862 58.17457 60.13160       NA 53.82198 55.51805
 [9] 60.46000 56.45756
> 
> colMeans(tmp5)
 [1] 107.93433  66.32285  70.99239        NA  73.44786  78.27234  71.67350
 [8]  68.51348  71.04995  70.87003  72.30067  66.12586  65.52881  74.46126
[15]  67.58245  66.70647  74.69351  69.54872  69.07154  73.15086
> colSums(tmp5)
 [1] 1079.3433  663.2285  709.9239        NA  734.4786  782.7234  716.7350
 [8]  685.1348  710.4995  708.7003  723.0067  661.2586  655.2881  744.6126
[15]  675.8245  667.0647  746.9351  695.4872  690.7154  731.5086
> colVars(tmp5)
 [1] 16201.75409    61.12270    41.93588          NA   140.29720   114.97181
 [7]   100.45230    47.82646    45.76978    83.59857    78.83226    57.25213
[13]    72.36045   101.57017    34.87793   113.46015    34.10971    56.48038
[19]    46.58712    54.52365
> colSd(tmp5)
 [1] 127.286111   7.818101   6.475792         NA  11.844712  10.722491
 [7]  10.022589   6.915668   6.765337   9.143225   8.878753   7.566514
[13]   8.506495  10.078203   5.905754  10.651768   5.840352   7.515343
[19]   6.825476   7.384013
> colMax(tmp5)
 [1] 469.57711  85.39286  78.82561        NA  98.41030  96.09250  87.26537
 [8]  84.15594  79.27917  82.57303  88.04839  78.89258  83.17082  86.90799
[15]  78.98772  89.38443  86.38916  81.85164  78.28629  83.15962
> colMin(tmp5)
 [1] 60.65066 55.71603 60.16564       NA 58.17457 61.58546 60.18254 59.85971
 [9] 59.44147 53.82198 53.75224 54.78245 56.45756 59.84856 60.53642 54.02930
[17] 68.04079 59.23594 55.51805 60.86853
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.5771
> Min(tmp5,na.rm=TRUE)
[1] 53.75224
> mean(tmp5,na.rm=TRUE)
[1] 72.28917
> Sum(tmp5,na.rm=TRUE)
[1] 14385.54
> Var(tmp5,na.rm=TRUE)
[1] 874.9916
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.83969 68.78245 71.83764 69.48594 71.36174 71.20532 70.11096 69.51445
 [9] 72.29990 68.39943
> rowSums(tmp5,na.rm=TRUE)
 [1] 1796.794 1375.649 1436.753 1389.719 1427.235 1352.901 1402.219 1390.289
 [9] 1445.998 1367.989
> rowVars(tmp5,na.rm=TRUE)
 [1] 8103.95653   73.70082   74.29810   82.40583   59.21376  105.75118
 [7]   66.06861   62.75426   81.27137   37.71039
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.021978  8.584918  8.619635  9.077766  7.695048 10.283539  8.128260
 [8]  7.921758  9.015063  6.140878
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.57711  87.30627  86.90799  89.38443  84.50875  98.41030  85.39286
 [8]  79.27917  88.04839  78.57167
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.75224 54.02930 54.90862 58.17457 60.13160 54.78245 53.82198 55.51805
 [9] 60.46000 56.45756
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 107.93433  66.32285  70.99239  67.00845  73.44786  78.27234  71.67350
 [8]  68.51348  71.04995  70.87003  72.30067  66.12586  65.52881  74.46126
[15]  67.58245  66.70647  74.69351  69.54872  69.07154  73.15086
> colSums(tmp5,na.rm=TRUE)
 [1] 1079.3433  663.2285  709.9239  603.0760  734.4786  782.7234  716.7350
 [8]  685.1348  710.4995  708.7003  723.0067  661.2586  655.2881  744.6126
[15]  675.8245  667.0647  746.9351  695.4872  690.7154  731.5086
> colVars(tmp5,na.rm=TRUE)
 [1] 16201.75409    61.12270    41.93588    39.29580   140.29720   114.97181
 [7]   100.45230    47.82646    45.76978    83.59857    78.83226    57.25213
[13]    72.36045   101.57017    34.87793   113.46015    34.10971    56.48038
[19]    46.58712    54.52365
> colSd(tmp5,na.rm=TRUE)
 [1] 127.286111   7.818101   6.475792   6.268636  11.844712  10.722491
 [7]  10.022589   6.915668   6.765337   9.143225   8.878753   7.566514
[13]   8.506495  10.078203   5.905754  10.651768   5.840352   7.515343
[19]   6.825476   7.384013
> colMax(tmp5,na.rm=TRUE)
 [1] 469.57711  85.39286  78.82561  81.40158  98.41030  96.09250  87.26537
 [8]  84.15594  79.27917  82.57303  88.04839  78.89258  83.17082  86.90799
[15]  78.98772  89.38443  86.38916  81.85164  78.28629  83.15962
> colMin(tmp5,na.rm=TRUE)
 [1] 60.65066 55.71603 60.16564 60.03565 58.17457 61.58546 60.18254 59.85971
 [9] 59.44147 53.82198 53.75224 54.78245 56.45756 59.84856 60.53642 54.02930
[17] 68.04079 59.23594 55.51805 60.86853
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.83969 68.78245 71.83764 69.48594 71.36174      NaN 70.11096 69.51445
 [9] 72.29990 68.39943
> rowSums(tmp5,na.rm=TRUE)
 [1] 1796.794 1375.649 1436.753 1389.719 1427.235    0.000 1402.219 1390.289
 [9] 1445.998 1367.989
> rowVars(tmp5,na.rm=TRUE)
 [1] 8103.95653   73.70082   74.29810   82.40583   59.21376         NA
 [7]   66.06861   62.75426   81.27137   37.71039
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.021978  8.584918  8.619635  9.077766  7.695048        NA  8.128260
 [8]  7.921758  9.015063  6.140878
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.57711  87.30627  86.90799  89.38443  84.50875        NA  85.39286
 [8]  79.27917  88.04839  78.57167
> rowMin(tmp5,na.rm=TRUE)
 [1] 53.75224 54.02930 54.90862 58.17457 60.13160       NA 53.82198 55.51805
 [9] 60.46000 56.45756
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.90021  67.50139  70.42746       NaN  70.67425  78.29395  70.06102
 [8]  68.41777  70.18828  70.99477  72.57770  67.38624  65.94002  75.39309
[15]  67.62575  67.14852  74.93608  68.97848  68.54417  73.07394
> colSums(tmp5,na.rm=TRUE)
 [1] 1016.1019  607.5125  633.8471    0.0000  636.0683  704.6455  630.5492
 [8]  615.7600  631.6945  638.9529  653.1993  606.4762  593.4602  678.5378
[15]  608.6317  604.3367  674.4248  620.8063  616.8975  657.6655
> colVars(tmp5,na.rm=TRUE)
 [1] 17949.54801    53.13738    43.58740          NA    71.28943   129.33803
 [7]    83.75765    53.70172    43.13819    93.87333    87.82291    46.53739
[13]    79.50322   104.49786    39.21659   125.44423    37.71147    59.88214
[19]    49.28165    61.27255
> colSd(tmp5,na.rm=TRUE)
 [1] 133.975923   7.289539   6.602075         NA   8.443307  11.372688
 [7]   9.151921   7.328146   6.567967   9.688825   9.371388   6.821832
[13]   8.916458  10.222419   6.262315  11.200189   6.140966   7.738355
[19]   7.020089   7.827679
> colMax(tmp5,na.rm=TRUE)
 [1] 469.57711  85.39286  78.82561      -Inf  83.95236  96.09250  87.26537
 [8]  84.15594  79.27917  82.57303  88.04839  78.89258  83.17082  86.90799
[15]  78.98772  89.38443  86.38916  81.85164  78.28629  83.15962
> colMin(tmp5,na.rm=TRUE)
 [1] 60.65066 59.42070 60.16564      Inf 58.17457 61.58546 60.18254 59.85971
 [9] 59.44147 53.82198 53.75224 58.67604 56.45756 59.84856 60.53642 54.02930
[17] 68.04079 59.23594 55.51805 60.86853
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 202.56000 163.77912  73.73833 234.10182 354.28590 238.83620 299.78362
 [8] 329.67869 250.18234 316.35725
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 202.56000 163.77912  73.73833 234.10182 354.28590 238.83620 299.78362
 [8] 329.67869 250.18234 316.35725
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14 -9.947598e-14 -2.842171e-14 -1.705303e-13 -2.842171e-14
 [6]  2.842171e-14 -2.842171e-14 -8.526513e-14  8.526513e-14  2.842171e-14
[11]  5.684342e-14 -1.989520e-13  0.000000e+00 -1.136868e-13  8.526513e-14
[16]  0.000000e+00 -1.136868e-13  3.410605e-13  2.842171e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
9   3 
9   18 
2   2 
4   14 
1   15 
9   19 
2   15 
6   5 
7   16 
8   17 
9   18 
10   15 
2   20 
3   10 
5   3 
6   16 
2   15 
4   3 
2   6 
6   15 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.46405
> Min(tmp)
[1] -1.827889
> mean(tmp)
[1] 0.1325096
> Sum(tmp)
[1] 13.25096
> Var(tmp)
[1] 0.8502736
> 
> rowMeans(tmp)
[1] 0.1325096
> rowSums(tmp)
[1] 13.25096
> rowVars(tmp)
[1] 0.8502736
> rowSd(tmp)
[1] 0.9221028
> rowMax(tmp)
[1] 2.46405
> rowMin(tmp)
[1] -1.827889
> 
> colMeans(tmp)
  [1]  0.21034125 -0.56378084  1.57467951  0.98226262  1.40016744 -1.25799253
  [7]  1.33640608 -0.37124945 -0.26309005 -0.10941280 -0.04563498  0.73446559
 [13]  0.09515416  1.07435154  0.37233992  0.30841257  0.82219587  0.74790164
 [19] -0.41987526 -0.61464204 -0.46953869  0.04419457 -0.08032873  0.20677833
 [25]  1.74056758 -0.47015262 -1.47122074 -1.12237418 -0.33645913  1.08842519
 [31]  0.38658273 -0.02510926  0.89994640  2.07672410 -0.87414028  0.16088948
 [37]  0.98584250 -0.27690611  2.06369580 -0.35433302  1.28218787  0.56260101
 [43] -1.55764240  1.16002069  0.42626153  0.45981373  0.55563729  0.67626657
 [49] -0.66015609  0.47596556 -0.01587779  0.70381667  0.61302597  1.08608261
 [55] -1.00642152  0.54302162  0.45249650 -0.73274832  0.89138631  1.71550885
 [61] -0.58288692 -0.20559949  1.10095316 -0.63042072 -1.08421734 -0.59333271
 [67]  0.18104692  0.41280861 -1.41495156 -0.84917999 -1.47659930 -0.34238752
 [73] -0.93237959 -0.85503276  1.84469595 -0.76878298 -0.46609446 -0.80833718
 [79] -0.13581487  2.46404952  0.75848834  1.01050139  0.71021411 -0.76618787
 [85] -1.18970260  0.05692194  0.78037811 -0.29838097 -0.28785772 -1.16368978
 [91] -1.82788855  0.11376294 -0.06639165 -1.26602524  0.56750824  1.36879647
 [97]  0.52724447  1.33304918  0.79454808 -0.57919505
> colSums(tmp)
  [1]  0.21034125 -0.56378084  1.57467951  0.98226262  1.40016744 -1.25799253
  [7]  1.33640608 -0.37124945 -0.26309005 -0.10941280 -0.04563498  0.73446559
 [13]  0.09515416  1.07435154  0.37233992  0.30841257  0.82219587  0.74790164
 [19] -0.41987526 -0.61464204 -0.46953869  0.04419457 -0.08032873  0.20677833
 [25]  1.74056758 -0.47015262 -1.47122074 -1.12237418 -0.33645913  1.08842519
 [31]  0.38658273 -0.02510926  0.89994640  2.07672410 -0.87414028  0.16088948
 [37]  0.98584250 -0.27690611  2.06369580 -0.35433302  1.28218787  0.56260101
 [43] -1.55764240  1.16002069  0.42626153  0.45981373  0.55563729  0.67626657
 [49] -0.66015609  0.47596556 -0.01587779  0.70381667  0.61302597  1.08608261
 [55] -1.00642152  0.54302162  0.45249650 -0.73274832  0.89138631  1.71550885
 [61] -0.58288692 -0.20559949  1.10095316 -0.63042072 -1.08421734 -0.59333271
 [67]  0.18104692  0.41280861 -1.41495156 -0.84917999 -1.47659930 -0.34238752
 [73] -0.93237959 -0.85503276  1.84469595 -0.76878298 -0.46609446 -0.80833718
 [79] -0.13581487  2.46404952  0.75848834  1.01050139  0.71021411 -0.76618787
 [85] -1.18970260  0.05692194  0.78037811 -0.29838097 -0.28785772 -1.16368978
 [91] -1.82788855  0.11376294 -0.06639165 -1.26602524  0.56750824  1.36879647
 [97]  0.52724447  1.33304918  0.79454808 -0.57919505
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.21034125 -0.56378084  1.57467951  0.98226262  1.40016744 -1.25799253
  [7]  1.33640608 -0.37124945 -0.26309005 -0.10941280 -0.04563498  0.73446559
 [13]  0.09515416  1.07435154  0.37233992  0.30841257  0.82219587  0.74790164
 [19] -0.41987526 -0.61464204 -0.46953869  0.04419457 -0.08032873  0.20677833
 [25]  1.74056758 -0.47015262 -1.47122074 -1.12237418 -0.33645913  1.08842519
 [31]  0.38658273 -0.02510926  0.89994640  2.07672410 -0.87414028  0.16088948
 [37]  0.98584250 -0.27690611  2.06369580 -0.35433302  1.28218787  0.56260101
 [43] -1.55764240  1.16002069  0.42626153  0.45981373  0.55563729  0.67626657
 [49] -0.66015609  0.47596556 -0.01587779  0.70381667  0.61302597  1.08608261
 [55] -1.00642152  0.54302162  0.45249650 -0.73274832  0.89138631  1.71550885
 [61] -0.58288692 -0.20559949  1.10095316 -0.63042072 -1.08421734 -0.59333271
 [67]  0.18104692  0.41280861 -1.41495156 -0.84917999 -1.47659930 -0.34238752
 [73] -0.93237959 -0.85503276  1.84469595 -0.76878298 -0.46609446 -0.80833718
 [79] -0.13581487  2.46404952  0.75848834  1.01050139  0.71021411 -0.76618787
 [85] -1.18970260  0.05692194  0.78037811 -0.29838097 -0.28785772 -1.16368978
 [91] -1.82788855  0.11376294 -0.06639165 -1.26602524  0.56750824  1.36879647
 [97]  0.52724447  1.33304918  0.79454808 -0.57919505
> colMin(tmp)
  [1]  0.21034125 -0.56378084  1.57467951  0.98226262  1.40016744 -1.25799253
  [7]  1.33640608 -0.37124945 -0.26309005 -0.10941280 -0.04563498  0.73446559
 [13]  0.09515416  1.07435154  0.37233992  0.30841257  0.82219587  0.74790164
 [19] -0.41987526 -0.61464204 -0.46953869  0.04419457 -0.08032873  0.20677833
 [25]  1.74056758 -0.47015262 -1.47122074 -1.12237418 -0.33645913  1.08842519
 [31]  0.38658273 -0.02510926  0.89994640  2.07672410 -0.87414028  0.16088948
 [37]  0.98584250 -0.27690611  2.06369580 -0.35433302  1.28218787  0.56260101
 [43] -1.55764240  1.16002069  0.42626153  0.45981373  0.55563729  0.67626657
 [49] -0.66015609  0.47596556 -0.01587779  0.70381667  0.61302597  1.08608261
 [55] -1.00642152  0.54302162  0.45249650 -0.73274832  0.89138631  1.71550885
 [61] -0.58288692 -0.20559949  1.10095316 -0.63042072 -1.08421734 -0.59333271
 [67]  0.18104692  0.41280861 -1.41495156 -0.84917999 -1.47659930 -0.34238752
 [73] -0.93237959 -0.85503276  1.84469595 -0.76878298 -0.46609446 -0.80833718
 [79] -0.13581487  2.46404952  0.75848834  1.01050139  0.71021411 -0.76618787
 [85] -1.18970260  0.05692194  0.78037811 -0.29838097 -0.28785772 -1.16368978
 [91] -1.82788855  0.11376294 -0.06639165 -1.26602524  0.56750824  1.36879647
 [97]  0.52724447  1.33304918  0.79454808 -0.57919505
> colMedians(tmp)
  [1]  0.21034125 -0.56378084  1.57467951  0.98226262  1.40016744 -1.25799253
  [7]  1.33640608 -0.37124945 -0.26309005 -0.10941280 -0.04563498  0.73446559
 [13]  0.09515416  1.07435154  0.37233992  0.30841257  0.82219587  0.74790164
 [19] -0.41987526 -0.61464204 -0.46953869  0.04419457 -0.08032873  0.20677833
 [25]  1.74056758 -0.47015262 -1.47122074 -1.12237418 -0.33645913  1.08842519
 [31]  0.38658273 -0.02510926  0.89994640  2.07672410 -0.87414028  0.16088948
 [37]  0.98584250 -0.27690611  2.06369580 -0.35433302  1.28218787  0.56260101
 [43] -1.55764240  1.16002069  0.42626153  0.45981373  0.55563729  0.67626657
 [49] -0.66015609  0.47596556 -0.01587779  0.70381667  0.61302597  1.08608261
 [55] -1.00642152  0.54302162  0.45249650 -0.73274832  0.89138631  1.71550885
 [61] -0.58288692 -0.20559949  1.10095316 -0.63042072 -1.08421734 -0.59333271
 [67]  0.18104692  0.41280861 -1.41495156 -0.84917999 -1.47659930 -0.34238752
 [73] -0.93237959 -0.85503276  1.84469595 -0.76878298 -0.46609446 -0.80833718
 [79] -0.13581487  2.46404952  0.75848834  1.01050139  0.71021411 -0.76618787
 [85] -1.18970260  0.05692194  0.78037811 -0.29838097 -0.28785772 -1.16368978
 [91] -1.82788855  0.11376294 -0.06639165 -1.26602524  0.56750824  1.36879647
 [97]  0.52724447  1.33304918  0.79454808 -0.57919505
> colRanges(tmp)
          [,1]       [,2]    [,3]      [,4]     [,5]      [,6]     [,7]
[1,] 0.2103412 -0.5637808 1.57468 0.9822626 1.400167 -1.257993 1.336406
[2,] 0.2103412 -0.5637808 1.57468 0.9822626 1.400167 -1.257993 1.336406
           [,8]     [,9]      [,10]       [,11]     [,12]      [,13]    [,14]
[1,] -0.3712494 -0.26309 -0.1094128 -0.04563498 0.7344656 0.09515416 1.074352
[2,] -0.3712494 -0.26309 -0.1094128 -0.04563498 0.7344656 0.09515416 1.074352
         [,15]     [,16]     [,17]     [,18]      [,19]     [,20]      [,21]
[1,] 0.3723399 0.3084126 0.8221959 0.7479016 -0.4198753 -0.614642 -0.4695387
[2,] 0.3723399 0.3084126 0.8221959 0.7479016 -0.4198753 -0.614642 -0.4695387
          [,22]       [,23]     [,24]    [,25]      [,26]     [,27]     [,28]
[1,] 0.04419457 -0.08032873 0.2067783 1.740568 -0.4701526 -1.471221 -1.122374
[2,] 0.04419457 -0.08032873 0.2067783 1.740568 -0.4701526 -1.471221 -1.122374
          [,29]    [,30]     [,31]       [,32]     [,33]    [,34]      [,35]
[1,] -0.3364591 1.088425 0.3865827 -0.02510926 0.8999464 2.076724 -0.8741403
[2,] -0.3364591 1.088425 0.3865827 -0.02510926 0.8999464 2.076724 -0.8741403
         [,36]     [,37]      [,38]    [,39]     [,40]    [,41]    [,42]
[1,] 0.1608895 0.9858425 -0.2769061 2.063696 -0.354333 1.282188 0.562601
[2,] 0.1608895 0.9858425 -0.2769061 2.063696 -0.354333 1.282188 0.562601
         [,43]    [,44]     [,45]     [,46]     [,47]     [,48]      [,49]
[1,] -1.557642 1.160021 0.4262615 0.4598137 0.5556373 0.6762666 -0.6601561
[2,] -1.557642 1.160021 0.4262615 0.4598137 0.5556373 0.6762666 -0.6601561
         [,50]       [,51]     [,52]    [,53]    [,54]     [,55]     [,56]
[1,] 0.4759656 -0.01587779 0.7038167 0.613026 1.086083 -1.006422 0.5430216
[2,] 0.4759656 -0.01587779 0.7038167 0.613026 1.086083 -1.006422 0.5430216
         [,57]      [,58]     [,59]    [,60]      [,61]      [,62]    [,63]
[1,] 0.4524965 -0.7327483 0.8913863 1.715509 -0.5828869 -0.2055995 1.100953
[2,] 0.4524965 -0.7327483 0.8913863 1.715509 -0.5828869 -0.2055995 1.100953
          [,64]     [,65]      [,66]     [,67]     [,68]     [,69]    [,70]
[1,] -0.6304207 -1.084217 -0.5933327 0.1810469 0.4128086 -1.414952 -0.84918
[2,] -0.6304207 -1.084217 -0.5933327 0.1810469 0.4128086 -1.414952 -0.84918
         [,71]      [,72]      [,73]      [,74]    [,75]     [,76]      [,77]
[1,] -1.476599 -0.3423875 -0.9323796 -0.8550328 1.844696 -0.768783 -0.4660945
[2,] -1.476599 -0.3423875 -0.9323796 -0.8550328 1.844696 -0.768783 -0.4660945
          [,78]      [,79]   [,80]     [,81]    [,82]     [,83]      [,84]
[1,] -0.8083372 -0.1358149 2.46405 0.7584883 1.010501 0.7102141 -0.7661879
[2,] -0.8083372 -0.1358149 2.46405 0.7584883 1.010501 0.7102141 -0.7661879
         [,85]      [,86]     [,87]     [,88]      [,89]    [,90]     [,91]
[1,] -1.189703 0.05692194 0.7803781 -0.298381 -0.2878577 -1.16369 -1.827889
[2,] -1.189703 0.05692194 0.7803781 -0.298381 -0.2878577 -1.16369 -1.827889
         [,92]       [,93]     [,94]     [,95]    [,96]     [,97]    [,98]
[1,] 0.1137629 -0.06639165 -1.266025 0.5675082 1.368796 0.5272445 1.333049
[2,] 0.1137629 -0.06639165 -1.266025 0.5675082 1.368796 0.5272445 1.333049
         [,99]     [,100]
[1,] 0.7945481 -0.5791951
[2,] 0.7945481 -0.5791951
> 
> 
> Max(tmp2)
[1] 2.531325
> Min(tmp2)
[1] -2.065254
> mean(tmp2)
[1] -0.1102814
> Sum(tmp2)
[1] -11.02814
> Var(tmp2)
[1] 0.9522014
> 
> rowMeans(tmp2)
  [1]  0.86287511 -0.84208225  0.40880718  0.23411726 -0.67665659  0.29506316
  [7] -0.87101400 -0.44419849 -0.84735238 -0.46060934  0.68672924 -0.74214780
 [13] -0.89825943 -0.12907117 -0.50222343  0.82923103 -1.16609405 -0.02384595
 [19] -0.94267885  0.75488714 -0.56711403 -1.77215295  1.53178947  0.14878438
 [25]  0.94210435 -0.22336075 -1.98066838 -1.48290014 -0.16091344  2.06834165
 [31] -0.78080061 -0.56258228  1.67460130  1.71991346 -1.77394591  0.54381526
 [37] -0.99607977 -2.06525378  0.86687497 -0.53487985 -0.40016933  0.03163577
 [43]  1.46909748  0.98987029  2.53132527 -0.17036256 -0.46287555 -1.42809515
 [49]  0.27735755  0.74969075 -0.59446516 -0.13721866  0.86090444  0.47411420
 [55] -1.10012028 -0.11908917 -0.46303709  0.13522013  0.42120033 -0.81741983
 [61] -1.31075604  0.36009564  0.26036919  0.47335285 -1.54779532 -1.21667954
 [67] -1.84988776 -1.62758246  1.60367562  0.01567768 -0.38948347 -0.04351092
 [73]  0.32590734 -1.06269995 -1.37986281 -0.40089855  0.62080994  0.97942879
 [79]  0.04921964  1.51214590  0.24712819  0.20416610  0.80146192 -0.25962103
 [85]  1.43575348 -0.30060989 -1.39763137 -0.20361840  0.83600466 -0.68638075
 [91]  1.28501249 -0.79501455 -0.56177120 -0.48329541  1.04361161  0.12545505
 [97] -1.02622803 -0.59169712  0.91307280 -1.35407750
> rowSums(tmp2)
  [1]  0.86287511 -0.84208225  0.40880718  0.23411726 -0.67665659  0.29506316
  [7] -0.87101400 -0.44419849 -0.84735238 -0.46060934  0.68672924 -0.74214780
 [13] -0.89825943 -0.12907117 -0.50222343  0.82923103 -1.16609405 -0.02384595
 [19] -0.94267885  0.75488714 -0.56711403 -1.77215295  1.53178947  0.14878438
 [25]  0.94210435 -0.22336075 -1.98066838 -1.48290014 -0.16091344  2.06834165
 [31] -0.78080061 -0.56258228  1.67460130  1.71991346 -1.77394591  0.54381526
 [37] -0.99607977 -2.06525378  0.86687497 -0.53487985 -0.40016933  0.03163577
 [43]  1.46909748  0.98987029  2.53132527 -0.17036256 -0.46287555 -1.42809515
 [49]  0.27735755  0.74969075 -0.59446516 -0.13721866  0.86090444  0.47411420
 [55] -1.10012028 -0.11908917 -0.46303709  0.13522013  0.42120033 -0.81741983
 [61] -1.31075604  0.36009564  0.26036919  0.47335285 -1.54779532 -1.21667954
 [67] -1.84988776 -1.62758246  1.60367562  0.01567768 -0.38948347 -0.04351092
 [73]  0.32590734 -1.06269995 -1.37986281 -0.40089855  0.62080994  0.97942879
 [79]  0.04921964  1.51214590  0.24712819  0.20416610  0.80146192 -0.25962103
 [85]  1.43575348 -0.30060989 -1.39763137 -0.20361840  0.83600466 -0.68638075
 [91]  1.28501249 -0.79501455 -0.56177120 -0.48329541  1.04361161  0.12545505
 [97] -1.02622803 -0.59169712  0.91307280 -1.35407750
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.86287511 -0.84208225  0.40880718  0.23411726 -0.67665659  0.29506316
  [7] -0.87101400 -0.44419849 -0.84735238 -0.46060934  0.68672924 -0.74214780
 [13] -0.89825943 -0.12907117 -0.50222343  0.82923103 -1.16609405 -0.02384595
 [19] -0.94267885  0.75488714 -0.56711403 -1.77215295  1.53178947  0.14878438
 [25]  0.94210435 -0.22336075 -1.98066838 -1.48290014 -0.16091344  2.06834165
 [31] -0.78080061 -0.56258228  1.67460130  1.71991346 -1.77394591  0.54381526
 [37] -0.99607977 -2.06525378  0.86687497 -0.53487985 -0.40016933  0.03163577
 [43]  1.46909748  0.98987029  2.53132527 -0.17036256 -0.46287555 -1.42809515
 [49]  0.27735755  0.74969075 -0.59446516 -0.13721866  0.86090444  0.47411420
 [55] -1.10012028 -0.11908917 -0.46303709  0.13522013  0.42120033 -0.81741983
 [61] -1.31075604  0.36009564  0.26036919  0.47335285 -1.54779532 -1.21667954
 [67] -1.84988776 -1.62758246  1.60367562  0.01567768 -0.38948347 -0.04351092
 [73]  0.32590734 -1.06269995 -1.37986281 -0.40089855  0.62080994  0.97942879
 [79]  0.04921964  1.51214590  0.24712819  0.20416610  0.80146192 -0.25962103
 [85]  1.43575348 -0.30060989 -1.39763137 -0.20361840  0.83600466 -0.68638075
 [91]  1.28501249 -0.79501455 -0.56177120 -0.48329541  1.04361161  0.12545505
 [97] -1.02622803 -0.59169712  0.91307280 -1.35407750
> rowMin(tmp2)
  [1]  0.86287511 -0.84208225  0.40880718  0.23411726 -0.67665659  0.29506316
  [7] -0.87101400 -0.44419849 -0.84735238 -0.46060934  0.68672924 -0.74214780
 [13] -0.89825943 -0.12907117 -0.50222343  0.82923103 -1.16609405 -0.02384595
 [19] -0.94267885  0.75488714 -0.56711403 -1.77215295  1.53178947  0.14878438
 [25]  0.94210435 -0.22336075 -1.98066838 -1.48290014 -0.16091344  2.06834165
 [31] -0.78080061 -0.56258228  1.67460130  1.71991346 -1.77394591  0.54381526
 [37] -0.99607977 -2.06525378  0.86687497 -0.53487985 -0.40016933  0.03163577
 [43]  1.46909748  0.98987029  2.53132527 -0.17036256 -0.46287555 -1.42809515
 [49]  0.27735755  0.74969075 -0.59446516 -0.13721866  0.86090444  0.47411420
 [55] -1.10012028 -0.11908917 -0.46303709  0.13522013  0.42120033 -0.81741983
 [61] -1.31075604  0.36009564  0.26036919  0.47335285 -1.54779532 -1.21667954
 [67] -1.84988776 -1.62758246  1.60367562  0.01567768 -0.38948347 -0.04351092
 [73]  0.32590734 -1.06269995 -1.37986281 -0.40089855  0.62080994  0.97942879
 [79]  0.04921964  1.51214590  0.24712819  0.20416610  0.80146192 -0.25962103
 [85]  1.43575348 -0.30060989 -1.39763137 -0.20361840  0.83600466 -0.68638075
 [91]  1.28501249 -0.79501455 -0.56177120 -0.48329541  1.04361161  0.12545505
 [97] -1.02622803 -0.59169712  0.91307280 -1.35407750
> 
> colMeans(tmp2)
[1] -0.1102814
> colSums(tmp2)
[1] -11.02814
> colVars(tmp2)
[1] 0.9522014
> colSd(tmp2)
[1] 0.9758081
> colMax(tmp2)
[1] 2.531325
> colMin(tmp2)
[1] -2.065254
> colMedians(tmp2)
[1] -0.165638
> colRanges(tmp2)
          [,1]
[1,] -2.065254
[2,]  2.531325
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.94506777 -6.68581238  2.01579395  0.94936088  5.40285836 -3.12678299
 [7]  2.80425037  0.01819916  1.54092038 -0.31027735
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -2.68832199
[2,] -0.21683993
[3,] -0.01319427
[4,]  0.40584531
[5,]  0.93411353
> 
> rowApply(tmp,sum)
 [1]  1.9655623  0.1839045 -2.1744743  1.9380777 -0.6858619 -2.2378164
 [7]  2.1050142  0.6422163 -2.7923487  0.7191687
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10    1    8    8    6    7    3    5    6     1
 [2,]    6    5    3    1    1   10    4    1    2     2
 [3,]    9    4    7    9    2    5    7   10    5     4
 [4,]    3    2    9   10    9    8    1    4    3    10
 [5,]    1    9   10    5    7    9    8    7    8     9
 [6,]    4    7    2    4   10    3    6    2    4     3
 [7,]    8   10    6    3    4    6    2    3    9     5
 [8,]    2    6    5    6    8    1    9    9    1     8
 [9,]    5    8    4    2    5    4    5    8   10     6
[10,]    7    3    1    7    3    2   10    6    7     7
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.3376662  0.7002425  3.0336188  0.9416966  3.6069467 -1.2847405
 [7] -0.9541809 -3.3488437 -0.0230720 -0.1803286 -1.3239670 -1.5364628
[13]  2.4801377 -3.0942689  1.3750337 -1.7055106  1.0508943  1.1675378
[19] -0.5830503  0.4615902
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.8876946
[2,] -0.2002762
[3,]  0.8029818
[4,]  1.2689978
[5,]  1.3536574
> 
> rowApply(tmp,sum)
[1]  5.705092 -2.513440 -1.374680 -5.000760  5.304727
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   18    2   17   10   17
[2,]   19   15    1    6   13
[3,]    6   19    8   20   16
[4,]    8    9   18   13   10
[5,]   17   20   15   11   14
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]         [,4]        [,5]       [,6]
[1,]  1.3536574  1.7915177 -0.3133486  0.027964665  0.92174230 -0.9846281
[2,] -1.8876946  0.2580587  1.6153070 -0.047803287  1.70561742 -0.4197652
[3,]  0.8029818 -1.2842347 -0.1757552  0.806237957  0.43110337  0.3765264
[4,] -0.2002762 -0.5827631  0.9780234  0.150745767 -0.08945971  0.7016199
[5,]  1.2689978  0.5176640  0.9293922  0.004551542  0.63794333 -0.9584936
            [,7]        [,8]       [,9]       [,10]      [,11]      [,12]
[1,]  0.74411541  0.50553657  0.4259234 -0.52230802 -0.3992739  0.7725651
[2,]  0.15975358 -1.43069319 -0.5093161  0.07695274 -1.3301553  0.3714566
[3,]  0.07007821 -0.88825981 -0.8902098 -0.91176840 -0.1655993 -1.0055417
[4,] -1.19402364 -1.45272330 -0.4958376  0.66822008  0.2419257 -0.5374216
[5,] -0.73410444 -0.08270396  1.4463681  0.50857501  0.3291358 -1.1375212
          [,13]      [,14]       [,15]     [,16]       [,17]      [,18]
[1,]  0.3634000  0.7745113 -1.08921113 -1.067647  0.61888342  1.9707567
[2,] -0.7218236  0.1982003  0.05836890  1.341963  0.19537378 -2.1339703
[3,]  1.3874302 -0.6671674  0.06804022 -1.212849 -0.01477922  0.1481582
[4,]  0.5961511 -2.3446371 -0.33666199  0.400989  0.45620199 -1.0825620
[5,]  0.8549800 -1.0551761  2.67449769 -1.167966 -0.20478562  2.2651551
           [,19]       [,20]
[1,]  0.07731548 -0.26638031
[2,]  0.35941413 -0.37268468
[3,]  0.57929099  1.17163716
[4,] -0.85410120 -0.02416925
[5,] -0.74496966 -0.04681272
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  632  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  544  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1      col2        col3      col4       col5     col6       col7
row1 -0.5646376 0.9480391 -0.06061048 -1.501423 -0.2927144 0.318237 -0.9827178
          col8        col9     col10      col11       col12      col13
row1 -1.801152 -0.06115842 0.2792111 -0.8933507 -0.02522346 -0.4844673
         col14     col15     col16     col17    col18        col19      col20
row1 0.1592828 -1.524283 0.4911905 0.9369325 0.964763 -0.008705161 -0.2013845
> tmp[,"col10"]
          col10
row1  0.2792111
row2 -1.2266003
row3 -0.3867597
row4 -1.3455641
row5 -2.3499597
> tmp[c("row1","row5"),]
           col1       col2        col3      col4       col5     col6       col7
row1 -0.5646376 0.94803908 -0.06061048 -1.501423 -0.2927144 0.318237 -0.9827178
row5  0.8979118 0.03330359 -0.57122184 -1.391362 -1.4369568 1.158451  2.3325459
           col8        col9      col10      col11       col12       col13
row1 -1.8011522 -0.06115842  0.2792111 -0.8933507 -0.02522346 -0.48446732
row5  0.8223263  0.94590338 -2.3499597  0.2766591  0.22265849  0.04077132
         col14      col15     col16      col17     col18        col19
row1 0.1592828 -1.5242825 0.4911905  0.9369325  0.964763 -0.008705161
row5 1.0843176 -0.8240909 0.5263126 -1.3908639 -1.256244  1.675138478
          col20
row1 -0.2013845
row5  1.8925993
> tmp[,c("col6","col20")]
           col6      col20
row1  0.3182370 -0.2013845
row2 -1.9104461 -0.1739290
row3  0.5668831  1.5977490
row4 -1.6141318 -0.9031944
row5  1.1584513  1.8925993
> tmp[c("row1","row5"),c("col6","col20")]
         col6      col20
row1 0.318237 -0.2013845
row5 1.158451  1.8925993
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
        col1     col2     col3    col4     col5     col6     col7     col8
row1 50.3431 48.57824 51.49688 50.5375 49.82881 104.1985 51.63399 51.84193
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.89478 48.67806 51.16179 50.82096 49.96705 49.96287 51.27789 50.82104
        col17    col18    col19    col20
row1 51.65303 51.06271 49.92516 104.4284
> tmp[,"col10"]
        col10
row1 48.67806
row2 30.99579
row3 28.71921
row4 29.70293
row5 49.91467
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.34310 48.57824 51.49688 50.53750 49.82881 104.1985 51.63399 51.84193
row5 48.54739 50.33320 50.63370 50.50598 49.65772 104.8676 49.73430 49.57078
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.89478 48.67806 51.16179 50.82096 49.96705 49.96287 51.27789 50.82104
row5 49.72699 49.91467 50.92974 50.58869 49.62215 48.64202 49.97829 49.52931
        col17    col18    col19    col20
row1 51.65303 51.06271 49.92516 104.4284
row5 48.51792 47.94948 49.62427 105.4209
> tmp[,c("col6","col20")]
          col6     col20
row1 104.19853 104.42840
row2  75.30710  72.83380
row3  75.35978  75.92541
row4  74.75908  73.41516
row5 104.86761 105.42095
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.1985 104.4284
row5 104.8676 105.4209
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.1985 104.4284
row5 104.8676 105.4209
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.2766931
[2,]  0.7931707
[3,]  0.2319932
[4,]  0.9887592
[5,]  0.2261013
> tmp[,c("col17","col7")]
           col17       col7
[1,]  0.42412305 -0.7329806
[2,] -1.08653243 -2.0550613
[3,] -0.02809199 -1.0681302
[4,]  1.84712309 -0.9383834
[5,]  1.66565540  0.5149202
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,] -1.2346624  1.70184023
[2,] -0.1932769 -0.08541191
[3,] -1.3928356 -1.24084346
[4,]  1.7487519  0.02176131
[5,]  0.3899019  0.42411283
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -1.234662
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -1.2346624
[2,] -0.1932769
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]     [,3]       [,4]       [,5]      [,6]       [,7]
row3 -0.9127631 -0.8547964 1.023700 -0.4527781 -0.6465873 -1.942951 -1.5861538
row1 -0.8587126 -1.6660376 1.628582 -0.2629895 -0.5465051 -0.901156 -0.2311077
          [,8]        [,9]     [,10]       [,11]      [,12]      [,13]
row3 1.1809780  0.07208657 -1.923796 -0.45570807 -2.4403111 -0.1572273
row1 0.7745039 -2.20492546 -1.125591 -0.09619462 -0.4404184  1.8362437
         [,14]     [,15]      [,16]     [,17]      [,18]      [,19]      [,20]
row3 0.8253162 0.7594772  0.9881835 0.5477217 -0.4912386 -0.9227448 -0.8013403
row1 0.3859789 0.6060569 -0.4306772 1.9992669  0.2405396 -2.5352926 -0.8653468
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]       [,2]        [,3]      [,4]     [,5]      [,6]     [,7]
row2 -0.2993527 -0.1370969 -0.08603736 0.1770039 0.736211 0.6826977 1.593057
           [,8]     [,9]  [,10]
row2 -0.0517912 1.358018 1.4374
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]        [,2]      [,3]      [,4]       [,5]       [,6]    [,7]
row5 -0.3876826 -0.03239138 0.7730289 0.4459592 -0.2318467 -0.7162315 0.96598
             [,8]     [,9]    [,10]      [,11]      [,12]     [,13]      [,14]
row5 -0.001213244 0.684045 0.484481 0.03233101 -0.7879574 0.5777228 -0.1614843
          [,15]       [,16]     [,17]     [,18]    [,19]     [,20]
row5 -0.5425815 -0.09135147 -1.359507 0.1278715 1.075022 -1.324895
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)

> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e0121f4b6e"
 [2] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e078263ab5"
 [3] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e0214e52a9"
 [4] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e05e6616c3"
 [5] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e048b96aed"
 [6] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e036ae5c22"
 [7] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e05a3d571f"
 [8] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e07ffe583" 
 [9] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e05beed14" 
[10] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e07919a00" 
[11] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e04bc42454"
[12] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e021d861ff"
[13] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e04b91221d"
[14] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e066c3535a"
[15] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_i386\\BM17e0493646ab"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)

> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)

Warning message:
In dir.create(new.directory) :
  'C:\Users\biocbuild\bbs-3.9-bioc\meat\BufferedMatrix.Rcheck\tests_i386' already exists
> 
> 
> RowMode(tmp)

> rowMedians(tmp)
  [1] -0.2746031544  0.4392173595  0.0850287032  0.3668940976 -0.1776146164
  [6] -0.1461585568  0.1586464639 -0.2065437084 -0.2827354217  0.3473241545
 [11] -0.0604752452  0.0767771786  0.1612777964  0.0366817755 -0.5783906727
 [16] -0.8598869610 -0.1589808147  0.1557228744 -0.2146850998 -0.2297554215
 [21] -0.3118713660 -0.0496465676  0.5513368816  0.3119062514 -0.3919099328
 [26]  0.2856573922  0.2747234133 -0.4822409029 -0.2854738619 -0.2087180333
 [31] -0.5863158802  0.4419100652 -0.4302968068  0.1003428042 -0.1775323314
 [36] -0.1201122293 -0.3166161272  0.4839981225  0.4479467247  0.1057557991
 [41] -0.1012526665  0.1820361399 -0.1765143144  0.1549389502  0.0336394081
 [46]  0.0748794947  0.6291719845  0.0013801565 -0.4120358155 -0.1286232346
 [51]  0.3558674093 -0.1668892607 -0.4227880873  0.6051013482 -0.1786766242
 [56]  0.5860426317 -0.2180465124 -0.1405886445  0.4976178301 -0.5070406956
 [61]  0.1063942731 -0.0403487606  0.2064185601  0.1950165688  0.1552130899
 [66]  0.1262080620  0.4134061754  0.3916993572 -0.5958622473  0.0343387203
 [71]  0.1097468338  0.0142017692  0.0064479399 -0.1428837524 -0.0765720818
 [76] -0.1679857001 -0.0407205629 -0.5011824535 -0.0972530270 -0.0624734778
 [81]  0.1783800181  0.2474743665 -0.0747835181 -0.1040799610 -0.5861701415
 [86] -0.0347269428  0.4449536255  0.0091580699 -0.2098543568  0.2597487039
 [91] -0.4717310650  0.2962691364  0.1071844392  0.0911279303  0.5517801469
 [96] -0.5241850951  0.2397949044  0.2179922025 -0.2097049342  0.1921869833
[101]  0.2147837805 -0.3274700587  0.3743263937 -0.3391459054 -0.0009693625
[106] -0.0258650143 -0.1891823073 -0.1843397654  0.2025635081  0.1754714893
[111] -0.1227198745  0.2016523959 -0.1581645330 -0.5258034235 -0.1772456861
[116]  0.3204743852 -0.5944347349 -0.4980714220  0.0127412276 -0.0734656045
[121] -0.2357769876 -0.1054609554 -0.3435802198  0.2896522019 -0.0525630028
[126] -0.6037162264 -0.3287802462 -0.3132595224  0.1960476671 -0.4040657955
[131] -0.0785643453  0.6291666224 -0.8647101286  0.3539534301  0.1110393699
[136]  0.0545888074  0.0262637843 -0.1280574841 -0.1488250455 -0.1505202200
[141] -0.1144783471  0.4853892008  0.2757173665  0.0610519878  0.2502924033
[146] -0.3972684776  0.0219554802 -0.7576775151 -0.4347499762  0.1387377372
[151]  0.6667150111 -0.3280146131 -0.4066254489 -0.0114184794  0.0792367698
[156]  0.2428962197  0.5715931858  0.0314751886  0.2249752435 -0.1418443320
[161]  0.0622324599  0.3454796599  0.2321228156  0.5255344264  0.5027564871
[166]  0.1450094915  0.0612770599 -0.1417492285  0.3987033949 -0.0489149078
[171] -0.2226627153  0.1642078394 -0.0291309053 -0.0414030002  0.3068948868
[176]  0.0491779697  0.0648602928  0.0645904919  0.0649801476  0.1071632488
[181]  0.2875323534  0.1245970495 -0.2165193356  0.3924899059  0.1907878292
[186] -0.3283375643 -0.2217146148 -0.1896780879  0.0227404464  0.0215275386
[191]  0.1272979488 -0.3646227349  0.2722119877  0.4920621378 -0.2554396019
[196]  0.0045993826 -0.1953545480 -0.5211083186  0.0861856150  0.0888719184
[201]  0.0609807658  0.0749962001 -0.4063134216 -0.5234231692 -0.6310261162
[206] -0.0848813308  0.1629838249 -0.0083883289 -0.4184928769  0.4559979467
[211]  0.1775780084 -0.2789713329 -0.3434279666 -0.4893558770  0.0144394805
[216] -0.5000378629  0.4388403731 -0.0229130367 -0.0311036216  0.0694487822
[221] -0.1550512806  0.0165396947 -0.4912797864  0.3288676168 -0.3386751495
[226]  0.3802085690  0.3338070569  0.0539624068  0.1664244383  0.0219762068
> 
> proc.time()
   user  system elapsed 
   3.34    8.15   11.87 

BufferedMatrix.Rcheck/tests_x64/objectTesting.Rout


R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 408057 21.8     849841 45.4   632071 33.8
Vcells 702566  5.4    8388608 64.0  1654127 12.7
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Oct 16 02:22:17 2019"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Oct 16 02:22:17 2019"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)

> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Oct 16 02:22:19 2019"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Oct 16 02:22:21 2019"
> 
> ColMode(tmp2)

> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]        [,2]       [,3]        [,4]
[1,] 99.3805221 -0.07363331  1.5854162 -0.70361199
[2,]  1.7696392 -0.62911036 -1.0513359 -0.44717486
[3,] -1.2605285  0.15162452  0.0432175 -0.10313421
[4,]  0.8954874 -1.64775242  2.0812692  0.04836146
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]       [,2]      [,3]       [,4]
[1,] 99.3805221 0.07363331 1.5854162 0.70361199
[2,]  1.7696392 0.62911036 1.0513359 0.44717486
[3,]  1.2605285 0.15162452 0.0432175 0.10313421
[4,]  0.8954874 1.64775242 2.0812692 0.04836146
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9689780 0.2713546 1.2591331 0.8388158
[2,] 1.3302779 0.7931648 1.0253467 0.6687113
[3,] 1.1227326 0.3893899 0.2078882 0.3211452
[4,] 0.9463019 1.2836481 1.4426605 0.2199124
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.07030 27.78718 39.17675 34.09177
[2,]  40.07242 33.56076 36.30480 32.13429
[3,]  37.48785 29.04552 27.12210 28.31459
[4,]  35.35851 39.48423 41.50787 27.24749
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)

> exp(tmp5)

> log(tmp5,2)

> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.373
> Min(tmp5)
[1] 52.83993
> mean(tmp5)
[1] 72.20877
> Sum(tmp5)
[1] 14441.75
> Var(tmp5)
[1] 851.2114
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.66665 69.80618 68.95905 73.57910 71.83251 70.34997 68.29017 69.17932
 [9] 68.82523 70.59947
> rowSums(tmp5)
 [1] 1813.333 1396.124 1379.181 1471.582 1436.650 1406.999 1365.803 1383.586
 [9] 1376.505 1411.989
> rowVars(tmp5)
 [1] 7877.90202   60.54043   67.38696  118.72179   96.26411   56.43753
 [7]   45.65362   45.36366   83.19841   41.67025
> rowSd(tmp5)
 [1] 88.757546  7.780773  8.208956 10.895953  9.811428  7.512491  6.756746
 [8]  6.735255  9.121316  6.455249
> rowMax(tmp5)
 [1] 466.37298  88.19109  84.17669  98.72451  91.26594  84.40221  78.96034
 [8]  77.91404  83.03101  82.74724
> rowMin(tmp5)
 [1] 57.83537 55.39609 56.45110 56.71207 54.91348 56.12508 52.83993 55.70265
 [9] 53.76566 55.18888
> 
> colMeans(tmp5)
 [1] 115.56747  69.30629  72.12724  66.78790  70.25189  71.74999  71.62534
 [8]  70.33721  72.88728  69.21601  71.71634  67.66106  73.98748  72.17714
[15]  74.00336  62.25886  69.63556  68.69575  68.16108  66.02205
> colSums(tmp5)
 [1] 1155.6747  693.0629  721.2724  667.8790  702.5189  717.4999  716.2534
 [8]  703.3721  728.8728  692.1601  717.1634  676.6106  739.8748  721.7714
[15]  740.0336  622.5886  696.3556  686.9575  681.6108  660.2205
> colVars(tmp5)
 [1] 15220.97229    59.88100    81.08352    40.64207    40.39066   140.37843
 [7]    49.59940   101.84318    86.15597    45.34670    46.19900   102.25466
[13]    43.02332    54.70996    92.06856    26.37215    51.64246    13.36684
[19]    71.89697    81.15313
> colSd(tmp5)
 [1] 123.373305   7.738282   9.004639   6.375113   6.355365  11.848140
 [7]   7.042684  10.091738   9.282024   6.733996   6.796985  10.112105
[13]   6.559216   7.396618   9.595236   5.135382   7.186269   3.656069
[19]   8.479208   9.008503
> colMax(tmp5)
 [1] 466.37298  82.18126  86.39320  76.96498  82.79925  90.66133  82.32538
 [8]  91.26594  86.26515  79.11115  85.95403  80.87353  87.19081  84.40221
[15]  98.72451  70.32383  84.32901  73.60487  88.19109  83.03101
> colMin(tmp5)
 [1] 68.66745 57.83537 56.45110 56.71207 62.94441 55.70265 59.83435 57.25446
 [9] 53.76566 58.93070 64.55819 52.83993 62.73913 59.56466 65.49628 55.18888
[17] 61.41332 61.08404 57.12616 54.91348
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.66665 69.80618 68.95905       NA 71.83251 70.34997 68.29017 69.17932
 [9] 68.82523 70.59947
> rowSums(tmp5)
 [1] 1813.333 1396.124 1379.181       NA 1436.650 1406.999 1365.803 1383.586
 [9] 1376.505 1411.989
> rowVars(tmp5)
 [1] 7877.90202   60.54043   67.38696  116.18723   96.26411   56.43753
 [7]   45.65362   45.36366   83.19841   41.67025
> rowSd(tmp5)
 [1] 88.757546  7.780773  8.208956 10.779018  9.811428  7.512491  6.756746
 [8]  6.735255  9.121316  6.455249
> rowMax(tmp5)
 [1] 466.37298  88.19109  84.17669        NA  91.26594  84.40221  78.96034
 [8]  77.91404  83.03101  82.74724
> rowMin(tmp5)
 [1] 57.83537 55.39609 56.45110       NA 54.91348 56.12508 52.83993 55.70265
 [9] 53.76566 55.18888
> 
> colMeans(tmp5)
 [1] 115.56747  69.30629  72.12724  66.78790  70.25189  71.74999  71.62534
 [8]  70.33721  72.88728  69.21601  71.71634  67.66106  73.98748  72.17714
[15]  74.00336  62.25886  69.63556        NA  68.16108  66.02205
> colSums(tmp5)
 [1] 1155.6747  693.0629  721.2724  667.8790  702.5189  717.4999  716.2534
 [8]  703.3721  728.8728  692.1601  717.1634  676.6106  739.8748  721.7714
[15]  740.0336  622.5886  696.3556        NA  681.6108  660.2205
> colVars(tmp5)
 [1] 15220.97229    59.88100    81.08352    40.64207    40.39066   140.37843
 [7]    49.59940   101.84318    86.15597    45.34670    46.19900   102.25466
[13]    43.02332    54.70996    92.06856    26.37215    51.64246          NA
[19]    71.89697    81.15313
> colSd(tmp5)
 [1] 123.373305   7.738282   9.004639   6.375113   6.355365  11.848140
 [7]   7.042684  10.091738   9.282024   6.733996   6.796985  10.112105
[13]   6.559216   7.396618   9.595236   5.135382   7.186269         NA
[19]   8.479208   9.008503
> colMax(tmp5)
 [1] 466.37298  82.18126  86.39320  76.96498  82.79925  90.66133  82.32538
 [8]  91.26594  86.26515  79.11115  85.95403  80.87353  87.19081  84.40221
[15]  98.72451  70.32383  84.32901        NA  88.19109  83.03101
> colMin(tmp5)
 [1] 68.66745 57.83537 56.45110 56.71207 62.94441 55.70265 59.83435 57.25446
 [9] 53.76566 58.93070 64.55819 52.83993 62.73913 59.56466 65.49628 55.18888
[17] 61.41332       NA 57.12616 54.91348
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.373
> Min(tmp5,na.rm=TRUE)
[1] 52.83993
> mean(tmp5,na.rm=TRUE)
[1] 72.26467
> Sum(tmp5,na.rm=TRUE)
[1] 14380.67
> Var(tmp5,na.rm=TRUE)
[1] 854.8823
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.66665 69.80618 68.95905 74.23674 71.83251 70.34997 68.29017 69.17932
 [9] 68.82523 70.59947
> rowSums(tmp5,na.rm=TRUE)
 [1] 1813.333 1396.124 1379.181 1410.498 1436.650 1406.999 1365.803 1383.586
 [9] 1376.505 1411.989
> rowVars(tmp5,na.rm=TRUE)
 [1] 7877.90202   60.54043   67.38696  116.18723   96.26411   56.43753
 [7]   45.65362   45.36366   83.19841   41.67025
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.757546  7.780773  8.208956 10.779018  9.811428  7.512491  6.756746
 [8]  6.735255  9.121316  6.455249
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.37298  88.19109  84.17669  98.72451  91.26594  84.40221  78.96034
 [8]  77.91404  83.03101  82.74724
> rowMin(tmp5,na.rm=TRUE)
 [1] 57.83537 55.39609 56.45110 56.71207 54.91348 56.12508 52.83993 55.70265
 [9] 53.76566 55.18888
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.56747  69.30629  72.12724  66.78790  70.25189  71.74999  71.62534
 [8]  70.33721  72.88728  69.21601  71.71634  67.66106  73.98748  72.17714
[15]  74.00336  62.25886  69.63556  69.54150  68.16108  66.02205
> colSums(tmp5,na.rm=TRUE)
 [1] 1155.6747  693.0629  721.2724  667.8790  702.5189  717.4999  716.2534
 [8]  703.3721  728.8728  692.1601  717.1634  676.6106  739.8748  721.7714
[15]  740.0336  622.5886  696.3556  625.8735  681.6108  660.2205
> colVars(tmp5,na.rm=TRUE)
 [1] 15220.97229    59.88100    81.08352    40.64207    40.39066   140.37843
 [7]    49.59940   101.84318    86.15597    45.34670    46.19900   102.25466
[13]    43.02332    54.70996    92.06856    26.37215    51.64246     6.99072
[19]    71.89697    81.15313
> colSd(tmp5,na.rm=TRUE)
 [1] 123.373305   7.738282   9.004639   6.375113   6.355365  11.848140
 [7]   7.042684  10.091738   9.282024   6.733996   6.796985  10.112105
[13]   6.559216   7.396618   9.595236   5.135382   7.186269   2.643997
[19]   8.479208   9.008503
> colMax(tmp5,na.rm=TRUE)
 [1] 466.37298  82.18126  86.39320  76.96498  82.79925  90.66133  82.32538
 [8]  91.26594  86.26515  79.11115  85.95403  80.87353  87.19081  84.40221
[15]  98.72451  70.32383  84.32901  73.60487  88.19109  83.03101
> colMin(tmp5,na.rm=TRUE)
 [1] 68.66745 57.83537 56.45110 56.71207 62.94441 55.70265 59.83435 57.25446
 [9] 53.76566 58.93070 64.55819 52.83993 62.73913 59.56466 65.49628 55.18888
[17] 61.41332 65.62153 57.12616 54.91348
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.66665 69.80618 68.95905      NaN 71.83251 70.34997 68.29017 69.17932
 [9] 68.82523 70.59947
> rowSums(tmp5,na.rm=TRUE)
 [1] 1813.333 1396.124 1379.181    0.000 1436.650 1406.999 1365.803 1383.586
 [9] 1376.505 1411.989
> rowVars(tmp5,na.rm=TRUE)
 [1] 7877.90202   60.54043   67.38696         NA   96.26411   56.43753
 [7]   45.65362   45.36366   83.19841   41.67025
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.757546  7.780773  8.208956        NA  9.811428  7.512491  6.756746
 [8]  6.735255  9.121316  6.455249
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.37298  88.19109  84.17669        NA  91.26594  84.40221  78.96034
 [8]  77.91404  83.03101  82.74724
> rowMin(tmp5,na.rm=TRUE)
 [1] 57.83537 55.39609 56.45110       NA 54.91348 56.12508 52.83993 55.70265
 [9] 53.76566 55.18888
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 120.23117  67.87574  70.54213  67.90743  70.19628  70.94255  72.20841
 [8]  70.41648  73.25755  70.35882  70.13438  66.25440  73.35858  72.64645
[15]  71.25656  62.57635  68.00296       NaN  68.09758  65.32480
> colSums(tmp5,na.rm=TRUE)
 [1] 1082.0806  610.8816  634.8792  611.1669  631.7665  638.4829  649.8757
 [8]  633.7483  659.3179  633.2294  631.2094  596.2896  660.2272  653.8180
[15]  641.3091  563.1871  612.0266    0.0000  612.8782  587.9232
> colVars(tmp5,na.rm=TRUE)
 [1] 16878.90444    44.34324    62.95261    31.62201    45.40470   150.59112
 [7]    51.97454   114.50289    95.38309    36.32231    23.81945    92.77625
[13]    43.95161    59.07093    18.69721    28.53471    28.11204          NA
[19]    80.83872    85.82801
> colSd(tmp5,na.rm=TRUE)
 [1] 129.918838   6.659072   7.934268   5.623345   6.738301  12.271557
 [7]   7.209337  10.700602   9.766427   6.026799   4.880518   9.632043
[13]   6.629601   7.685761   4.324027   5.341789   5.302079         NA
[19]   8.991036   9.264341
> colMax(tmp5,na.rm=TRUE)
 [1] 466.37298  74.46443  81.54127  76.96498  82.79925  90.66133  82.32538
 [8]  91.26594  86.26515  79.11115  78.36203  80.87353  87.19081  84.40221
[15]  78.22796  70.32383  74.73155      -Inf  88.19109  83.03101
> colMin(tmp5,na.rm=TRUE)
 [1] 68.66745 57.83537 56.45110 58.93310 62.94441 55.70265 59.83435 57.25446
 [9] 53.76566 61.54799 64.55819 52.83993 62.73913 59.56466 65.49628 55.18888
[17] 61.41332      Inf 57.12616 54.91348
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 175.9693 151.2492 171.7193 169.1034 370.5854 250.2965 207.0386 218.1400
 [9] 221.5229 301.4261
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 175.9693 151.2492 171.7193 169.1034 370.5854 250.2965 207.0386 218.1400
 [9] 221.5229 301.4261
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00 -2.842171e-14  8.526513e-14  0.000000e+00 -1.136868e-13
 [6]  8.526513e-14 -1.421085e-14 -2.842171e-14 -5.684342e-14  0.000000e+00
[11] -5.684342e-14  0.000000e+00  1.989520e-13  0.000000e+00 -1.989520e-13
[16]  2.842171e-14  2.273737e-13  8.526513e-14  0.000000e+00  7.105427e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
8   18 
5   1 
10   8 
2   6 
2   17 
5   13 
9   20 
2   14 
4   16 
6   18 
1   12 
7   9 
6   2 
5   8 
9   8 
2   2 
5   19 
7   18 
1   20 
5   6 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.065205
> Min(tmp)
[1] -1.980141
> mean(tmp)
[1] 0.01516715
> Sum(tmp)
[1] 1.516715
> Var(tmp)
[1] 0.8499396
> 
> rowMeans(tmp)
[1] 0.01516715
> rowSums(tmp)
[1] 1.516715
> rowVars(tmp)
[1] 0.8499396
> rowSd(tmp)
[1] 0.9219217
> rowMax(tmp)
[1] 2.065205
> rowMin(tmp)
[1] -1.980141
> 
> colMeans(tmp)
  [1]  0.09152705 -0.96823684  1.65535405  0.02646867  0.19027912 -0.44266756
  [7]  1.28477106 -0.35231100  0.07336815  0.80935122  0.01113923  1.06606789
 [13] -0.90452659 -0.01136166 -0.91294895  0.25749550 -0.59084750 -0.81133073
 [19]  0.60518446 -1.25139632  0.47526529  0.60529039  0.48962631  0.17542717
 [25] -0.80282337 -1.52592323 -0.85220261 -0.79945245 -0.35900929 -0.35262166
 [31] -0.84335799  1.52017012 -1.18553187  0.47416105  0.41209011 -0.96153687
 [37] -0.13671442 -1.43826289 -0.92287138 -1.98014133  0.98997075 -0.62893056
 [43] -0.04056852 -0.21790782  0.28638290  0.14145493  1.01213619  0.31915023
 [49] -1.12082423  0.90845114  0.32673711  0.02826049  0.51614831 -0.69880364
 [55] -1.43009265  0.47359133  0.61789390 -1.70356606  1.63611828  1.02142692
 [61]  1.30863802  0.47088437 -1.07682049  0.50469570 -0.16796567 -1.37389447
 [67] -1.10985400  0.06510832 -0.56803806  0.07702034 -0.06714373  0.26083477
 [73] -0.88906444  0.07311281  0.31283783 -1.54100194  1.45718801 -0.54801734
 [79]  0.97269885  1.09784193  0.22240293  0.61336363  2.06520484 -1.39726061
 [85]  0.16774483 -0.28561172  0.24024783 -0.31249435  1.39128569 -1.56410419
 [91]  1.11564945  1.84763135  0.64747487  1.35413222 -1.04373982  1.37398813
 [97] -0.05341379 -0.54995973  0.58500884  1.58611496
> colSums(tmp)
  [1]  0.09152705 -0.96823684  1.65535405  0.02646867  0.19027912 -0.44266756
  [7]  1.28477106 -0.35231100  0.07336815  0.80935122  0.01113923  1.06606789
 [13] -0.90452659 -0.01136166 -0.91294895  0.25749550 -0.59084750 -0.81133073
 [19]  0.60518446 -1.25139632  0.47526529  0.60529039  0.48962631  0.17542717
 [25] -0.80282337 -1.52592323 -0.85220261 -0.79945245 -0.35900929 -0.35262166
 [31] -0.84335799  1.52017012 -1.18553187  0.47416105  0.41209011 -0.96153687
 [37] -0.13671442 -1.43826289 -0.92287138 -1.98014133  0.98997075 -0.62893056
 [43] -0.04056852 -0.21790782  0.28638290  0.14145493  1.01213619  0.31915023
 [49] -1.12082423  0.90845114  0.32673711  0.02826049  0.51614831 -0.69880364
 [55] -1.43009265  0.47359133  0.61789390 -1.70356606  1.63611828  1.02142692
 [61]  1.30863802  0.47088437 -1.07682049  0.50469570 -0.16796567 -1.37389447
 [67] -1.10985400  0.06510832 -0.56803806  0.07702034 -0.06714373  0.26083477
 [73] -0.88906444  0.07311281  0.31283783 -1.54100194  1.45718801 -0.54801734
 [79]  0.97269885  1.09784193  0.22240293  0.61336363  2.06520484 -1.39726061
 [85]  0.16774483 -0.28561172  0.24024783 -0.31249435  1.39128569 -1.56410419
 [91]  1.11564945  1.84763135  0.64747487  1.35413222 -1.04373982  1.37398813
 [97] -0.05341379 -0.54995973  0.58500884  1.58611496
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.09152705 -0.96823684  1.65535405  0.02646867  0.19027912 -0.44266756
  [7]  1.28477106 -0.35231100  0.07336815  0.80935122  0.01113923  1.06606789
 [13] -0.90452659 -0.01136166 -0.91294895  0.25749550 -0.59084750 -0.81133073
 [19]  0.60518446 -1.25139632  0.47526529  0.60529039  0.48962631  0.17542717
 [25] -0.80282337 -1.52592323 -0.85220261 -0.79945245 -0.35900929 -0.35262166
 [31] -0.84335799  1.52017012 -1.18553187  0.47416105  0.41209011 -0.96153687
 [37] -0.13671442 -1.43826289 -0.92287138 -1.98014133  0.98997075 -0.62893056
 [43] -0.04056852 -0.21790782  0.28638290  0.14145493  1.01213619  0.31915023
 [49] -1.12082423  0.90845114  0.32673711  0.02826049  0.51614831 -0.69880364
 [55] -1.43009265  0.47359133  0.61789390 -1.70356606  1.63611828  1.02142692
 [61]  1.30863802  0.47088437 -1.07682049  0.50469570 -0.16796567 -1.37389447
 [67] -1.10985400  0.06510832 -0.56803806  0.07702034 -0.06714373  0.26083477
 [73] -0.88906444  0.07311281  0.31283783 -1.54100194  1.45718801 -0.54801734
 [79]  0.97269885  1.09784193  0.22240293  0.61336363  2.06520484 -1.39726061
 [85]  0.16774483 -0.28561172  0.24024783 -0.31249435  1.39128569 -1.56410419
 [91]  1.11564945  1.84763135  0.64747487  1.35413222 -1.04373982  1.37398813
 [97] -0.05341379 -0.54995973  0.58500884  1.58611496
> colMin(tmp)
  [1]  0.09152705 -0.96823684  1.65535405  0.02646867  0.19027912 -0.44266756
  [7]  1.28477106 -0.35231100  0.07336815  0.80935122  0.01113923  1.06606789
 [13] -0.90452659 -0.01136166 -0.91294895  0.25749550 -0.59084750 -0.81133073
 [19]  0.60518446 -1.25139632  0.47526529  0.60529039  0.48962631  0.17542717
 [25] -0.80282337 -1.52592323 -0.85220261 -0.79945245 -0.35900929 -0.35262166
 [31] -0.84335799  1.52017012 -1.18553187  0.47416105  0.41209011 -0.96153687
 [37] -0.13671442 -1.43826289 -0.92287138 -1.98014133  0.98997075 -0.62893056
 [43] -0.04056852 -0.21790782  0.28638290  0.14145493  1.01213619  0.31915023
 [49] -1.12082423  0.90845114  0.32673711  0.02826049  0.51614831 -0.69880364
 [55] -1.43009265  0.47359133  0.61789390 -1.70356606  1.63611828  1.02142692
 [61]  1.30863802  0.47088437 -1.07682049  0.50469570 -0.16796567 -1.37389447
 [67] -1.10985400  0.06510832 -0.56803806  0.07702034 -0.06714373  0.26083477
 [73] -0.88906444  0.07311281  0.31283783 -1.54100194  1.45718801 -0.54801734
 [79]  0.97269885  1.09784193  0.22240293  0.61336363  2.06520484 -1.39726061
 [85]  0.16774483 -0.28561172  0.24024783 -0.31249435  1.39128569 -1.56410419
 [91]  1.11564945  1.84763135  0.64747487  1.35413222 -1.04373982  1.37398813
 [97] -0.05341379 -0.54995973  0.58500884  1.58611496
> colMedians(tmp)
  [1]  0.09152705 -0.96823684  1.65535405  0.02646867  0.19027912 -0.44266756
  [7]  1.28477106 -0.35231100  0.07336815  0.80935122  0.01113923  1.06606789
 [13] -0.90452659 -0.01136166 -0.91294895  0.25749550 -0.59084750 -0.81133073
 [19]  0.60518446 -1.25139632  0.47526529  0.60529039  0.48962631  0.17542717
 [25] -0.80282337 -1.52592323 -0.85220261 -0.79945245 -0.35900929 -0.35262166
 [31] -0.84335799  1.52017012 -1.18553187  0.47416105  0.41209011 -0.96153687
 [37] -0.13671442 -1.43826289 -0.92287138 -1.98014133  0.98997075 -0.62893056
 [43] -0.04056852 -0.21790782  0.28638290  0.14145493  1.01213619  0.31915023
 [49] -1.12082423  0.90845114  0.32673711  0.02826049  0.51614831 -0.69880364
 [55] -1.43009265  0.47359133  0.61789390 -1.70356606  1.63611828  1.02142692
 [61]  1.30863802  0.47088437 -1.07682049  0.50469570 -0.16796567 -1.37389447
 [67] -1.10985400  0.06510832 -0.56803806  0.07702034 -0.06714373  0.26083477
 [73] -0.88906444  0.07311281  0.31283783 -1.54100194  1.45718801 -0.54801734
 [79]  0.97269885  1.09784193  0.22240293  0.61336363  2.06520484 -1.39726061
 [85]  0.16774483 -0.28561172  0.24024783 -0.31249435  1.39128569 -1.56410419
 [91]  1.11564945  1.84763135  0.64747487  1.35413222 -1.04373982  1.37398813
 [97] -0.05341379 -0.54995973  0.58500884  1.58611496
> colRanges(tmp)
           [,1]       [,2]     [,3]       [,4]      [,5]       [,6]     [,7]
[1,] 0.09152705 -0.9682368 1.655354 0.02646867 0.1902791 -0.4426676 1.284771
[2,] 0.09152705 -0.9682368 1.655354 0.02646867 0.1902791 -0.4426676 1.284771
          [,8]       [,9]     [,10]      [,11]    [,12]      [,13]       [,14]
[1,] -0.352311 0.07336815 0.8093512 0.01113923 1.066068 -0.9045266 -0.01136166
[2,] -0.352311 0.07336815 0.8093512 0.01113923 1.066068 -0.9045266 -0.01136166
          [,15]     [,16]      [,17]      [,18]     [,19]     [,20]     [,21]
[1,] -0.9129489 0.2574955 -0.5908475 -0.8113307 0.6051845 -1.251396 0.4752653
[2,] -0.9129489 0.2574955 -0.5908475 -0.8113307 0.6051845 -1.251396 0.4752653
         [,22]     [,23]     [,24]      [,25]     [,26]      [,27]      [,28]
[1,] 0.6052904 0.4896263 0.1754272 -0.8028234 -1.525923 -0.8522026 -0.7994525
[2,] 0.6052904 0.4896263 0.1754272 -0.8028234 -1.525923 -0.8522026 -0.7994525
          [,29]      [,30]     [,31]   [,32]     [,33]    [,34]     [,35]
[1,] -0.3590093 -0.3526217 -0.843358 1.52017 -1.185532 0.474161 0.4120901
[2,] -0.3590093 -0.3526217 -0.843358 1.52017 -1.185532 0.474161 0.4120901
          [,36]      [,37]     [,38]      [,39]     [,40]     [,41]      [,42]
[1,] -0.9615369 -0.1367144 -1.438263 -0.9228714 -1.980141 0.9899707 -0.6289306
[2,] -0.9615369 -0.1367144 -1.438263 -0.9228714 -1.980141 0.9899707 -0.6289306
           [,43]      [,44]     [,45]     [,46]    [,47]     [,48]     [,49]
[1,] -0.04056852 -0.2179078 0.2863829 0.1414549 1.012136 0.3191502 -1.120824
[2,] -0.04056852 -0.2179078 0.2863829 0.1414549 1.012136 0.3191502 -1.120824
         [,50]     [,51]      [,52]     [,53]      [,54]     [,55]     [,56]
[1,] 0.9084511 0.3267371 0.02826049 0.5161483 -0.6988036 -1.430093 0.4735913
[2,] 0.9084511 0.3267371 0.02826049 0.5161483 -0.6988036 -1.430093 0.4735913
         [,57]     [,58]    [,59]    [,60]    [,61]     [,62]    [,63]
[1,] 0.6178939 -1.703566 1.636118 1.021427 1.308638 0.4708844 -1.07682
[2,] 0.6178939 -1.703566 1.636118 1.021427 1.308638 0.4708844 -1.07682
         [,64]      [,65]     [,66]     [,67]      [,68]      [,69]      [,70]
[1,] 0.5046957 -0.1679657 -1.373894 -1.109854 0.06510832 -0.5680381 0.07702034
[2,] 0.5046957 -0.1679657 -1.373894 -1.109854 0.06510832 -0.5680381 0.07702034
           [,71]     [,72]      [,73]      [,74]     [,75]     [,76]    [,77]
[1,] -0.06714373 0.2608348 -0.8890644 0.07311281 0.3128378 -1.541002 1.457188
[2,] -0.06714373 0.2608348 -0.8890644 0.07311281 0.3128378 -1.541002 1.457188
          [,78]     [,79]    [,80]     [,81]     [,82]    [,83]     [,84]
[1,] -0.5480173 0.9726989 1.097842 0.2224029 0.6133636 2.065205 -1.397261
[2,] -0.5480173 0.9726989 1.097842 0.2224029 0.6133636 2.065205 -1.397261
         [,85]      [,86]     [,87]      [,88]    [,89]     [,90]    [,91]
[1,] 0.1677448 -0.2856117 0.2402478 -0.3124943 1.391286 -1.564104 1.115649
[2,] 0.1677448 -0.2856117 0.2402478 -0.3124943 1.391286 -1.564104 1.115649
        [,92]     [,93]    [,94]    [,95]    [,96]       [,97]      [,98]
[1,] 1.847631 0.6474749 1.354132 -1.04374 1.373988 -0.05341379 -0.5499597
[2,] 1.847631 0.6474749 1.354132 -1.04374 1.373988 -0.05341379 -0.5499597
         [,99]   [,100]
[1,] 0.5850088 1.586115
[2,] 0.5850088 1.586115
> 
> 
> Max(tmp2)
[1] 2.761696
> Min(tmp2)
[1] -1.842833
> mean(tmp2)
[1] 0.1487732
> Sum(tmp2)
[1] 14.87732
> Var(tmp2)
[1] 0.9326063
> 
> rowMeans(tmp2)
  [1] -0.54110957 -0.30100102  0.74403409  0.35014434  0.43705484  0.15357140
  [7] -0.16667617  0.07244208  1.34557979  0.04062895 -0.64630183  1.27655576
 [13] -0.21650807 -0.38734423  1.69006151 -1.48207001  0.79535392 -0.26373352
 [19] -1.29135600  0.91355821 -0.65552499  0.07182836 -0.87529597  1.73588984
 [25] -0.71899309 -1.57852559  0.89129367 -0.73922932 -1.43325141  0.10900816
 [31]  0.07909953 -1.84283346 -1.00332816 -0.08545431 -0.11801302  0.53622414
 [37]  0.91847521 -0.36783705  1.30510570  0.21774839  0.65087389  1.20212092
 [43]  0.83891892  0.60250859  0.35428336 -0.58800354 -1.19033068  1.11706653
 [49] -0.91929807  1.48259879  0.36454634  1.17825626  1.22151531 -0.74332351
 [55]  1.17287356  2.13819881 -0.29780718 -0.23270365  0.35592916 -0.84578915
 [61] -0.03538621 -0.41803400  0.59727680 -0.54738087 -0.54733668 -1.28096085
 [67] -0.17212148  0.46017763 -1.41068403  2.62003605 -1.00114217 -1.06154245
 [73]  0.50358783  0.43360352  1.03624825  2.53530866 -0.20585366 -0.53900360
 [79]  0.78928305  0.25169558 -0.58558172  0.45235018  0.41948823 -0.44874770
 [85]  2.76169630 -0.24935004 -1.01557758 -0.05474929  1.96215879  0.87070931
 [91]  0.71579194 -0.09794411  1.49982538  0.34667396  1.28721787 -0.27315328
 [97]  0.31800545 -0.65024856 -0.36434129 -0.85638512
> rowSums(tmp2)
  [1] -0.54110957 -0.30100102  0.74403409  0.35014434  0.43705484  0.15357140
  [7] -0.16667617  0.07244208  1.34557979  0.04062895 -0.64630183  1.27655576
 [13] -0.21650807 -0.38734423  1.69006151 -1.48207001  0.79535392 -0.26373352
 [19] -1.29135600  0.91355821 -0.65552499  0.07182836 -0.87529597  1.73588984
 [25] -0.71899309 -1.57852559  0.89129367 -0.73922932 -1.43325141  0.10900816
 [31]  0.07909953 -1.84283346 -1.00332816 -0.08545431 -0.11801302  0.53622414
 [37]  0.91847521 -0.36783705  1.30510570  0.21774839  0.65087389  1.20212092
 [43]  0.83891892  0.60250859  0.35428336 -0.58800354 -1.19033068  1.11706653
 [49] -0.91929807  1.48259879  0.36454634  1.17825626  1.22151531 -0.74332351
 [55]  1.17287356  2.13819881 -0.29780718 -0.23270365  0.35592916 -0.84578915
 [61] -0.03538621 -0.41803400  0.59727680 -0.54738087 -0.54733668 -1.28096085
 [67] -0.17212148  0.46017763 -1.41068403  2.62003605 -1.00114217 -1.06154245
 [73]  0.50358783  0.43360352  1.03624825  2.53530866 -0.20585366 -0.53900360
 [79]  0.78928305  0.25169558 -0.58558172  0.45235018  0.41948823 -0.44874770
 [85]  2.76169630 -0.24935004 -1.01557758 -0.05474929  1.96215879  0.87070931
 [91]  0.71579194 -0.09794411  1.49982538  0.34667396  1.28721787 -0.27315328
 [97]  0.31800545 -0.65024856 -0.36434129 -0.85638512
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.54110957 -0.30100102  0.74403409  0.35014434  0.43705484  0.15357140
  [7] -0.16667617  0.07244208  1.34557979  0.04062895 -0.64630183  1.27655576
 [13] -0.21650807 -0.38734423  1.69006151 -1.48207001  0.79535392 -0.26373352
 [19] -1.29135600  0.91355821 -0.65552499  0.07182836 -0.87529597  1.73588984
 [25] -0.71899309 -1.57852559  0.89129367 -0.73922932 -1.43325141  0.10900816
 [31]  0.07909953 -1.84283346 -1.00332816 -0.08545431 -0.11801302  0.53622414
 [37]  0.91847521 -0.36783705  1.30510570  0.21774839  0.65087389  1.20212092
 [43]  0.83891892  0.60250859  0.35428336 -0.58800354 -1.19033068  1.11706653
 [49] -0.91929807  1.48259879  0.36454634  1.17825626  1.22151531 -0.74332351
 [55]  1.17287356  2.13819881 -0.29780718 -0.23270365  0.35592916 -0.84578915
 [61] -0.03538621 -0.41803400  0.59727680 -0.54738087 -0.54733668 -1.28096085
 [67] -0.17212148  0.46017763 -1.41068403  2.62003605 -1.00114217 -1.06154245
 [73]  0.50358783  0.43360352  1.03624825  2.53530866 -0.20585366 -0.53900360
 [79]  0.78928305  0.25169558 -0.58558172  0.45235018  0.41948823 -0.44874770
 [85]  2.76169630 -0.24935004 -1.01557758 -0.05474929  1.96215879  0.87070931
 [91]  0.71579194 -0.09794411  1.49982538  0.34667396  1.28721787 -0.27315328
 [97]  0.31800545 -0.65024856 -0.36434129 -0.85638512
> rowMin(tmp2)
  [1] -0.54110957 -0.30100102  0.74403409  0.35014434  0.43705484  0.15357140
  [7] -0.16667617  0.07244208  1.34557979  0.04062895 -0.64630183  1.27655576
 [13] -0.21650807 -0.38734423  1.69006151 -1.48207001  0.79535392 -0.26373352
 [19] -1.29135600  0.91355821 -0.65552499  0.07182836 -0.87529597  1.73588984
 [25] -0.71899309 -1.57852559  0.89129367 -0.73922932 -1.43325141  0.10900816
 [31]  0.07909953 -1.84283346 -1.00332816 -0.08545431 -0.11801302  0.53622414
 [37]  0.91847521 -0.36783705  1.30510570  0.21774839  0.65087389  1.20212092
 [43]  0.83891892  0.60250859  0.35428336 -0.58800354 -1.19033068  1.11706653
 [49] -0.91929807  1.48259879  0.36454634  1.17825626  1.22151531 -0.74332351
 [55]  1.17287356  2.13819881 -0.29780718 -0.23270365  0.35592916 -0.84578915
 [61] -0.03538621 -0.41803400  0.59727680 -0.54738087 -0.54733668 -1.28096085
 [67] -0.17212148  0.46017763 -1.41068403  2.62003605 -1.00114217 -1.06154245
 [73]  0.50358783  0.43360352  1.03624825  2.53530866 -0.20585366 -0.53900360
 [79]  0.78928305  0.25169558 -0.58558172  0.45235018  0.41948823 -0.44874770
 [85]  2.76169630 -0.24935004 -1.01557758 -0.05474929  1.96215879  0.87070931
 [91]  0.71579194 -0.09794411  1.49982538  0.34667396  1.28721787 -0.27315328
 [97]  0.31800545 -0.65024856 -0.36434129 -0.85638512
> 
> colMeans(tmp2)
[1] 0.1487732
> colSums(tmp2)
[1] 14.87732
> colVars(tmp2)
[1] 0.9326063
> colSd(tmp2)
[1] 0.9657155
> colMax(tmp2)
[1] 2.761696
> colMin(tmp2)
[1] -1.842833
> colMedians(tmp2)
[1] 0.07213522
> colRanges(tmp2)
          [,1]
[1,] -1.842833
[2,]  2.761696
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.71333098  3.63714795  0.04660685 -0.12954366 -3.92497569 -2.05584503
 [7]  2.23952296 -2.74234278  0.30381757  2.83513707
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.0562353
[2,] -0.3394786
[3,]  0.2324410
[4,]  0.4658813
[5,]  1.2251002
> 
> rowApply(tmp,sum)
 [1]  1.92629881 -2.53140845  0.74858321 -1.95580127  1.61633013 -0.07224374
 [7]  2.16058588 -2.47242804  5.92495286 -3.42201317
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    9    8    9    3    6    2    5    5    3     8
 [2,]    4    6    5   10    8    1    9    7    8    10
 [3,]    6    9    6    8    2    8    3    8    4     3
 [4,]    3    7   10    7    4    4    4    2    2     5
 [5,]    2    5    3    4    3    6    1    3    7     6
 [6,]    5    1    4    6    5    9    2   10    5     7
 [7,]    1   10    7    2    9   10   10    6    6     2
 [8,]   10    2    2    5    1    7    7    9    1     1
 [9,]    8    3    1    1   10    3    8    4   10     4
[10,]    7    4    8    9    7    5    6    1    9     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  3.87850530 -1.75623344  1.44816327 -2.50411341  0.38484359  0.17017328
 [7]  1.59089305  0.69335397  1.73397020 -0.48395716 -0.42173497 -0.56596651
[13] -0.91761059 -1.27634493 -0.63246089 -0.32607183  0.63048751  0.20254426
[19]  1.96911269 -0.02193924
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.16339019
[2,]  0.03307809
[3,]  1.00310541
[4,]  1.89181442
[5,]  2.11389757
> 
> rowApply(tmp,sum)
[1]  0.5529831  4.2754243  5.8359453 -3.7770780 -3.0916606
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20   20    3   11   20
[2,]   13    3    5   15    3
[3,]   17    2    7   16   19
[4,]    2   13   11    2    4
[5,]    9   10    8   12   14
> 
> 
> as.matrix(tmp)
            [,1]       [,2]        [,3]       [,4]        [,5]       [,6]
[1,]  2.11389757  0.1451653  1.20135356 -1.1568493 -0.42976126 -1.5801987
[2,]  1.89181442 -0.7558521 -0.83432870  0.4169247  0.21953615 -1.1346532
[3,] -1.16339019 -0.6708519 -0.07969253  0.5462287  0.25407131  1.1763919
[4,]  0.03307809  0.2831149  0.35429149 -1.5712747  0.04902839  1.1329054
[5,]  1.00310541 -0.7578097  0.80653944 -0.7391428  0.29196900  0.5757279
           [,7]       [,8]       [,9]       [,10]      [,11]      [,12]
[1,]  0.7848600 -0.5394934 -0.5453129 -0.33361955 -0.8781657  0.1419374
[2,]  0.5080695  0.2664277  0.9485732  0.06731545  0.5838453  0.1736228
[3,]  0.3372767  0.4587429  0.9732150  1.05399810  0.5572982  1.4395589
[4,]  0.9596280  0.1399877 -0.1784176 -0.89892494 -1.0600417 -1.6541318
[5,] -0.9989412  0.3676891  0.5359125 -0.37272622  0.3753289 -0.6669539
          [,13]      [,14]      [,15]       [,16]      [,17]      [,18]
[1,]  0.2362236  0.1225208 -0.8847881 -0.43592714  1.3902548  0.5586087
[2,]  0.6013456 -0.1491908 -0.4102883 -0.03517311 -0.2882337  0.9083746
[3,] -2.3431941 -1.2940521  1.7347951  1.07182120  1.0539331 -0.5070704
[4,]  0.8979051  0.2045195 -0.8744791 -0.86074579  0.5530728 -0.1668387
[5,] -0.3098909 -0.1601424 -0.1977005 -0.06604699 -2.0785395 -0.5905300
          [,19]      [,20]
[1,] -0.6278066  1.2700841
[2,]  0.9738401  0.3234546
[3,]  2.2338349 -0.9969696
[4,] -0.7773737 -0.3423816
[5,]  0.1666180 -0.2761268
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  674  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  582  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1     col2      col3       col4       col5       col6      col7
row1 -0.3182312 1.551165 -1.761286 -0.9777532 -0.4132679 -0.1959884 0.7349727
          col8       col9      col10      col11      col12      col13     col14
row1 0.9662979 0.02316222 0.07376797 -0.5287092 -0.2029006 -0.5059467 -1.206568
          col15     col16    col17     col18     col19    col20
row1 -0.1398702 -1.124775 -1.32055 -1.241582 0.7514015 0.439114
> tmp[,"col10"]
           col10
row1  0.07376797
row2 -0.25867555
row3  0.53762952
row4  0.56723102
row5  1.88909670
> tmp[c("row1","row5"),]
           col1      col2      col3       col4       col5       col6      col7
row1 -0.3182312  1.551165 -1.761286 -0.9777532 -0.4132679 -0.1959884 0.7349727
row5 -1.8025018 -2.052312 -1.378753  0.1168533  1.3935672 -0.2032664 1.2647023
           col8       col9      col10      col11      col12      col13
row1  0.9662979 0.02316222 0.07376797 -0.5287092 -0.2029006 -0.5059467
row5 -0.4615213 0.91250157 1.88909670  0.1959844 -0.1250386  1.2779135
         col14      col15      col16      col17       col18      col19
row1 -1.206568 -0.1398702 -1.1247750 -1.3205503 -1.24158198  0.7514015
row5  0.461297  0.4900971  0.4869809  0.7099458 -0.09761395 -0.3231884
         col20
row1  0.439114
row5 -1.659393
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.1959884  0.4391140
row2 -0.6238749  2.5539791
row3  0.8824383 -1.3446810
row4  0.9176877 -0.7121411
row5 -0.2032664 -1.6593928
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1 -0.1959884  0.439114
row5 -0.2032664 -1.659393
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.17727 49.00115 49.32544 49.48022 50.08279 104.9172 49.84462 49.99938
         col9    col10    col11    col12    col13    col14    col15    col16
row1 48.61625 51.32741 50.20619 48.81613 51.45216 50.32322 48.87047 52.11355
       col17    col18    col19    col20
row1 49.3125 49.06843 48.74378 103.9354
> tmp[,"col10"]
        col10
row1 51.32741
row2 28.83171
row3 31.80423
row4 29.91776
row5 48.07290
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.17727 49.00115 49.32544 49.48022 50.08279 104.9172 49.84462 49.99938
row5 50.08419 50.80524 50.58879 49.14559 50.35588 105.2533 49.72862 50.90850
         col9    col10    col11    col12    col13    col14    col15    col16
row1 48.61625 51.32741 50.20619 48.81613 51.45216 50.32322 48.87047 52.11355
row5 52.02641 48.07290 47.30855 49.91084 52.17563 50.90287 49.07355 51.14483
        col17    col18    col19    col20
row1 49.31250 49.06843 48.74378 103.9354
row5 48.55242 50.84362 50.00208 103.4171
> tmp[,c("col6","col20")]
          col6     col20
row1 104.91725 103.93540
row2  74.16633  75.12045
row3  76.17169  75.25293
row4  75.51701  73.92334
row5 105.25332 103.41711
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.9172 103.9354
row5 105.2533 103.4171
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.9172 103.9354
row5 105.2533 103.4171
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.2910202
[2,] -0.6234108
[3,] -0.4899663
[4,]  0.5852812
[5,]  2.4798128
> tmp[,c("col17","col7")]
          col17        col7
[1,]  0.4460464 -0.24506779
[2,] -0.8656314  0.20056765
[3,] -0.9446119 -0.88360054
[4,]  0.2060806 -0.09149548
[5,] -0.2339242 -0.09780914
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  1.2400361 -0.1467855
[2,]  2.6615756 -0.1702201
[3,] -0.6887872  1.7771379
[4,]  0.3362451  0.8642820
[5,] -0.3650973  0.3036465
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 1.240036
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
         col6
[1,] 1.240036
[2,] 2.661576
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]      [,2]       [,3]      [,4]       [,5]      [,6]       [,7]
row3 -1.102090 -1.279875  0.7452431 0.7090622 -0.5066933  0.709247 -0.4625628
row1 -1.791081  1.339801 -1.1620896 0.5841173  0.8897847 -1.098219  1.0316304
           [,8]       [,9]     [,10]      [,11]      [,12]     [,13]      [,14]
row3 -1.4674241  0.8779504  1.222754 -0.2595237  0.6626935 0.7084339 -0.3415451
row1  0.6886862 -3.0543348 -1.348795  1.9897896 -0.8116146 0.3491919  2.6428995
         [,15]      [,16]      [,17]      [,18]     [,19]       [,20]
row3 -1.697411 -0.3151385  1.7990457  0.6999546 0.5388073 -0.03731641
row1 -1.985572  1.4847324 -0.1497834 -0.3283036 0.7886673 -1.71853926
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
           [,1]      [,2]       [,3]     [,4]      [,5]     [,6]       [,7]
row2 -0.8722265 0.5541618 -0.2200709 0.867629 0.6295186 1.115174 -0.4750283
             [,8]      [,9]    [,10]
row2 -0.007176191 -1.006968 1.805172
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]      [,2]        [,3]       [,4]     [,5]       [,6]      [,7]
row5 0.5213529 0.9749165 -0.04528449 -0.8415824 1.104936 -0.5464643 -1.038093
          [,8]      [,9]      [,10]      [,11]     [,12]    [,13]      [,14]
row5 -0.686505 0.5984718 -0.3082669 -0.3018327 0.8464151 0.199319 -0.8442525
         [,15]      [,16]    [,17]      [,18]     [,19]      [,20]
row5 0.8079401 -0.5319679 1.319605 -0.4961944 0.4522856 -0.3419244
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)

> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c39491de2"
 [2] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c648b1cc" 
 [3] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c27ac2229"
 [4] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c2ec34c39"
 [5] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c6355845" 
 [6] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c5e001a92"
 [7] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c165750f2"
 [8] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c4a9429ac"
 [9] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c261f6d3" 
[10] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c24f07951"
[11] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c63574920"
[12] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c44af4c92"
[13] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c710a6e99"
[14] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c68d745e" 
[15] "C:/Users/biocbuild/bbs-3.9-bioc/meat/BufferedMatrix.Rcheck/tests_x64\\BMc0c270954be"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)

> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)

Warning message:
In dir.create(new.directory) :
  'C:\Users\biocbuild\bbs-3.9-bioc\meat\BufferedMatrix.Rcheck\tests_x64' already exists
> 
> 
> RowMode(tmp)

> rowMedians(tmp)
  [1] -0.1355695387 -0.2515188598  0.5319167953  0.3314810851 -0.4792474078
  [6] -0.2846786773 -0.1307735889 -0.0705983584 -0.1003683505 -0.3455640950
 [11] -0.0456238334  0.1546870150 -0.5906800595 -0.0255438921  0.4781102422
 [16] -0.0119345622  0.3194480580 -0.1346761351 -0.1787860189 -0.1678892422
 [21]  0.2445294554 -0.3624165811 -0.1573709115  0.4970755820 -0.2785429757
 [26]  0.4863833522  0.2406029714 -0.2573104344 -0.1537001999 -0.5130728626
 [31] -0.2529777493  0.0400472276 -0.1518358691 -0.1510897634 -0.0444977577
 [36] -0.3646863052  0.3544164543  0.7468432206 -0.0888295538 -0.1063687880
 [41]  0.1007268083  0.1001994422  0.0156518842 -0.0570417306  0.5608891281
 [46] -0.3265942094 -0.1341651777  0.2558573412 -0.0660521518 -0.0896312878
 [51] -0.2982371176 -0.0034584146 -0.3715734970  0.0931818380 -0.1462625740
 [56]  0.7493269503 -0.2566749343  0.2178412581  0.0734478096  0.1214737501
 [61] -0.2136176291 -0.5333808215 -0.1936018707 -0.4417821793  0.0277822707
 [66] -0.1904140785 -0.1660781033  0.2612398496 -0.3447992251 -0.0023609158
 [71] -0.6086350900 -0.6881587632 -0.4929542481 -0.1055263999 -0.2894615897
 [76] -0.0941466205  0.1020201046  0.4136212967 -0.0306827237 -0.1366840400
 [81]  0.1252021059 -0.0042322053  0.1902510257 -0.2282777812 -0.2403516272
 [86] -0.1811706192 -0.2874024291 -0.6375921079 -0.2072020431  0.3264911204
 [91]  0.2715155087  0.0829870576 -0.4877538825  0.1445492485  0.0337212083
 [96]  0.0485696623 -0.0476306550 -0.0870138501 -0.0823306158 -0.1918788705
[101]  0.3969628211  0.3608820264  0.5093275217  0.1217179796  0.0132535506
[106]  0.0147108373  0.2026681625  0.0478752032 -0.3030417463  0.0884831680
[111] -0.2605425792 -0.3460105614  0.0987434245 -0.0119421263 -0.3506215873
[116]  0.1641830136 -0.2019873941 -0.3076420859 -0.1040112938 -0.0053296278
[121] -0.3426826094  0.0165140423  0.3003496904  0.0008154089 -0.4412530380
[126] -0.6305316077 -0.3797552429 -0.0398418831 -0.2276904712  0.0354649765
[131]  0.2548112040 -0.1798621149 -0.0395202357 -0.6231455011 -0.3076746805
[136]  0.0880706333  0.3945521766 -0.1571576662  0.2548061476  0.0337654099
[141]  0.4511344876  0.1591338147  0.1805507892 -0.3922704955 -0.2752951537
[146]  0.0089680470  0.3928421670  0.0037276088 -0.3567672236 -0.4797217211
[151] -0.6521975338  0.3629430663 -0.3637012307 -0.5026111162  0.2788580472
[156]  0.0240550592 -0.1364253300 -0.2448789284 -0.2513330729  0.0318456555
[161] -0.2906880648  0.2212166582  0.0115920710 -0.3401504909 -0.1466516150
[166] -0.1715000152  0.5656846670 -0.2049311858  0.0044941433 -0.1130012409
[171]  0.4206828565 -0.1826850427  0.4846733886  0.3795588788  0.0146732767
[176]  0.2894721431 -0.6967385245 -0.3773017950 -0.4401088706  0.0178568361
[181] -0.8583406081  0.0186956037  0.0056740712  0.6645578916 -0.4734433516
[186] -0.0789015164 -0.1808876131 -0.5713952833  0.2588460299 -0.1363102955
[191]  0.0977366827  0.3851158029  0.3890276610 -0.1056545842  0.3791519436
[196] -0.2581837212  0.3934584868  0.0888069254  0.0542552225  0.1064730074
[201]  0.0045263936  0.3055817143 -0.2005964953  1.1668732256  0.0079146207
[206] -0.2124072975  0.3487224053  0.2722292148 -0.2302963479 -0.0727042029
[211]  0.0608696673 -0.0686049100  0.7670759660 -0.0031805051 -0.1775202919
[216]  0.0640513255 -0.0047908434  0.1359899500  0.2705057171 -0.1119204135
[221]  0.0469690156  0.4169497908 -0.3672806926  0.2980080757  0.3530831358
[226]  0.1149294024  0.1670436678  0.3523119282  0.1261748469  0.2145594102
> 
> proc.time()
   user  system elapsed 
   3.03    8.15   11.67 

BufferedMatrix.Rcheck/tests_i386/rawCalltesting.Rout


R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 


> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values







> .Call("R_bm_AddColumn",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 


> .Call("R_bm_AddColumn",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)

> .Call("R_bm_AddColumn",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> 
> .Call("R_bm_ResizeBuffer",P,5,5)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> 
> .Call("R_bm_RowMode",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> 
> .Call("R_bm_ColMode",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)

> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")

> .Call("R_bm_AddColumn",P)

> .Call("R_bm_AddColumn",P)

> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1dcc28935c8f" "BufferedMatrixFile1dcc352c2985"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile1dcc28935c8f" "BufferedMatrixFile1dcc352c2985"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)

> .Call("R_bm_AddColumn",P)

> .Call("R_bm_ReadOnlyModeToggle",P)

> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)

> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)

> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)

> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)

> .Call("R_bm_AddColumn",P)

> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)

> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)

> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> rm(P)
> 
> proc.time()
   user  system elapsed 
   0.54    0.06    0.59 

BufferedMatrix.Rcheck/tests_x64/rawCalltesting.Rout


R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 


> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values







> .Call("R_bm_AddColumn",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 


> .Call("R_bm_AddColumn",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)

> .Call("R_bm_AddColumn",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> 
> .Call("R_bm_ResizeBuffer",P,5,5)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> 
> .Call("R_bm_RowMode",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> 
> .Call("R_bm_ColMode",P)

> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 


> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)

> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")

> .Call("R_bm_AddColumn",P)

> .Call("R_bm_AddColumn",P)

> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile22087d365c7c" "BufferedMatrixFile2208c401b30" 
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile22087d365c7c" "BufferedMatrixFile2208c401b30" 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)

> .Call("R_bm_AddColumn",P)

> .Call("R_bm_ReadOnlyModeToggle",P)

> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)

> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)

> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)

> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)

> .Call("R_bm_AddColumn",P)

> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)

> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)

> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 


> rm(P)
> 
> proc.time()
   user  system elapsed 
   0.48    0.14    0.61 

BufferedMatrix.Rcheck/tests_i386/Rcodetesting.Rout


R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
   0.31    0.06    0.35 

BufferedMatrix.Rcheck/tests_x64/Rcodetesting.Rout


R version 3.6.1 (2019-07-05) -- "Action of the Toes"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
   0.53    0.06    0.57 

Example timings