Chapter 5 Grun human pancreas (CEL-seq2)

5.1 Introduction

This workflow performs an analysis of the Grun et al. (2016) CEL-seq2 dataset consisting of human pancreas cells from various donors.

5.2 Data loading

library(scRNAseq)
sce.grun <- GrunPancreasData()

We convert to Ensembl identifiers, and we remove duplicated genes or genes without Ensembl IDs.

library(org.Hs.eg.db)
gene.ids <- mapIds(org.Hs.eg.db, keys=rowData(sce.grun)$symbol,
    keytype="SYMBOL", column="ENSEMBL")

keep <- !is.na(gene.ids) & !duplicated(gene.ids)
sce.grun <- sce.grun[keep,]
rownames(sce.grun) <- gene.ids[keep]

5.3 Quality control

unfiltered <- sce.grun

This dataset lacks mitochondrial genes so we will do without them for quality control. We compute the median and MAD while blocking on the donor; for donors where the assumption of a majority of high-quality cells seems to be violated (Figure 5.1), we compute an appropriate threshold using the other donors as specified in the subset= argument.

library(scater)
stats <- perCellQCMetrics(sce.grun)

qc <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent",
    batch=sce.grun$donor,
    subset=sce.grun$donor %in% c("D17", "D7", "D2"))

sce.grun <- sce.grun[,!qc$discard]
colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc$discard

gridExtra::grid.arrange(
    plotColData(unfiltered, x="donor", y="sum", colour_by="discard") +
        scale_y_log10() + ggtitle("Total count"),
    plotColData(unfiltered, x="donor", y="detected", colour_by="discard") +
        scale_y_log10() + ggtitle("Detected features"),
    plotColData(unfiltered, x="donor", y="altexps_ERCC_percent",
        colour_by="discard") + ggtitle("ERCC percent"),
    ncol=2
)
Distribution of each QC metric across cells from each donor of the Grun pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

Figure 5.1: Distribution of each QC metric across cells from each donor of the Grun pancreas dataset. Each point represents a cell and is colored according to whether that cell was discarded.

colSums(as.matrix(qc), na.rm=TRUE)
##              low_lib_size            low_n_features high_altexps_ERCC_percent 
##                       451                       511                       605 
##                   discard 
##                       664

5.4 Normalization

library(scran)
set.seed(1000) # for irlba. 
clusters <- quickCluster(sce.grun)
sce.grun <- computeSumFactors(sce.grun, clusters=clusters)
sce.grun <- logNormCounts(sce.grun)
summary(sizeFactors(sce.grun))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.102   0.505   0.794   1.000   1.231  11.600
plot(librarySizeFactors(sce.grun), sizeFactors(sce.grun), pch=16,
    xlab="Library size factors", ylab="Deconvolution factors", log="xy")
Relationship between the library size factors and the deconvolution size factors in the Grun pancreas dataset.

Figure 5.2: Relationship between the library size factors and the deconvolution size factors in the Grun pancreas dataset.

5.5 Variance modelling

We block on a combined plate and donor factor.

block <- paste0(sce.grun$sample, "_", sce.grun$donor)
dec.grun <- modelGeneVarWithSpikes(sce.grun, spikes="ERCC", block=block)
top.grun <- getTopHVGs(dec.grun, prop=0.1)

We examine the number of cells in each level of the blocking factor.

table(block)
## block
##                  CD13+ sorted cells_D17       CD24+ CD44+ live sorted cells_D17 
##                                      86                                      87 
##                  CD63+ sorted cells_D10                TGFBR3+ sorted cells_D17 
##                                      40                                      90 
## exocrine fraction, live sorted cells_D2 exocrine fraction, live sorted cells_D3 
##                                      82                                       7 
##        live sorted cells, library 1_D10        live sorted cells, library 1_D17 
##                                      33                                      88 
##         live sorted cells, library 1_D3         live sorted cells, library 1_D7 
##                                      25                                      85 
##        live sorted cells, library 2_D10        live sorted cells, library 2_D17 
##                                      35                                      83 
##         live sorted cells, library 2_D3         live sorted cells, library 2_D7 
##                                      27                                      84 
##         live sorted cells, library 3_D3         live sorted cells, library 3_D7 
##                                      17                                      83 
##         live sorted cells, library 4_D3         live sorted cells, library 4_D7 
##                                      29                                      83
par(mfrow=c(6,3))
blocked.stats <- dec.grun$per.block
for (i in colnames(blocked.stats)) {
    current <- blocked.stats[[i]]
    plot(current$mean, current$total, main=i, pch=16, cex=0.5,
        xlab="Mean of log-expression", ylab="Variance of log-expression")
    curfit <- metadata(current)
    points(curfit$mean, curfit$var, col="red", pch=16)
    curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2)
}
Per-gene variance as a function of the mean for the log-expression values in the Grun pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-in transcripts (red) separately for each donor.

Figure 1.4: Per-gene variance as a function of the mean for the log-expression values in the Grun pancreas dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-in transcripts (red) separately for each donor.

5.6 Data integration

library(batchelor)
set.seed(1001010)
merged.grun <- fastMNN(sce.grun, subset.row=top.grun, batch=sce.grun$donor)
metadata(merged.grun)$merge.info$lost.var
##           D10      D17       D2      D3      D7
## [1,] 0.030283 0.030482 0.000000 0.00000 0.00000
## [2,] 0.007548 0.012081 0.038570 0.00000 0.00000
## [3,] 0.004077 0.005298 0.008043 0.05240 0.00000
## [4,] 0.014128 0.016551 0.016705 0.01539 0.05473

5.7 Dimensionality reduction

set.seed(100111)
merged.grun <- runTSNE(merged.grun, dimred="corrected")

5.8 Clustering

snn.gr <- buildSNNGraph(merged.grun, use.dimred="corrected")
colLabels(merged.grun) <- factor(igraph::cluster_walktrap(snn.gr)$membership)
table(Cluster=colLabels(merged.grun), Donor=merged.grun$batch)
##        Donor
## Cluster D10 D17  D2  D3  D7
##      1   32  70  31  81  28
##      2    3  10   3   3   6
##      3   14  35   3   2  69
##      4   11 119   0   0  55
##      5   11  69  31   2  70
##      6    3  39   0   0   8
##      7   16  38  12  11  46
##      8    1   9   0   0   7
##      9    5  13   0   0  10
##      10   3   2   2   4   2
##      11   4  13   0   0   1
##      12   5  17   0   2  33
gridExtra::grid.arrange(
    plotTSNE(merged.grun, colour_by="label"),
    plotTSNE(merged.grun, colour_by="batch"),
    ncol=2
)
Obligatory $t$-SNE plots of the Grun pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

Figure 5.3: Obligatory \(t\)-SNE plots of the Grun pancreas dataset. Each point represents a cell that is colored by cluster (left) or batch (right).

Session Info

R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] batchelor_1.22.0            scran_1.34.0               
 [3] scater_1.34.0               ggplot2_3.5.1              
 [5] scuttle_1.16.0              org.Hs.eg.db_3.20.0        
 [7] AnnotationDbi_1.68.0        scRNAseq_2.19.1            
 [9] SingleCellExperiment_1.28.0 SummarizedExperiment_1.36.0
[11] Biobase_2.66.0              GenomicRanges_1.58.0       
[13] GenomeInfoDb_1.42.0         IRanges_2.40.0             
[15] S4Vectors_0.44.0            BiocGenerics_0.52.0        
[17] MatrixGenerics_1.18.0       matrixStats_1.4.1          
[19] BiocStyle_2.34.0            rebook_1.16.0              

loaded via a namespace (and not attached):
  [1] jsonlite_1.8.9            CodeDepends_0.6.6        
  [3] magrittr_2.0.3            ggbeeswarm_0.7.2         
  [5] GenomicFeatures_1.58.0    gypsum_1.2.0             
  [7] farver_2.1.2              rmarkdown_2.28           
  [9] BiocIO_1.16.0             zlibbioc_1.52.0          
 [11] vctrs_0.6.5               DelayedMatrixStats_1.28.0
 [13] memoise_2.0.1             Rsamtools_2.22.0         
 [15] RCurl_1.98-1.16           htmltools_0.5.8.1        
 [17] S4Arrays_1.6.0            AnnotationHub_3.14.0     
 [19] curl_5.2.3                BiocNeighbors_2.0.0      
 [21] Rhdf5lib_1.28.0           SparseArray_1.6.0        
 [23] rhdf5_2.50.0              sass_0.4.9               
 [25] alabaster.base_1.6.0      bslib_0.8.0              
 [27] alabaster.sce_1.6.0       httr2_1.0.5              
 [29] cachem_1.1.0              ResidualMatrix_1.16.0    
 [31] GenomicAlignments_1.42.0  igraph_2.1.1             
 [33] lifecycle_1.0.4           pkgconfig_2.0.3          
 [35] rsvd_1.0.5                Matrix_1.7-1             
 [37] R6_2.5.1                  fastmap_1.2.0            
 [39] GenomeInfoDbData_1.2.13   digest_0.6.37            
 [41] colorspace_2.1-1          dqrng_0.4.1              
 [43] irlba_2.3.5.1             ExperimentHub_2.14.0     
 [45] RSQLite_2.3.7             beachmat_2.22.0          
 [47] labeling_0.4.3            filelock_1.0.3           
 [49] fansi_1.0.6               httr_1.4.7               
 [51] abind_1.4-8               compiler_4.4.1           
 [53] bit64_4.5.2               withr_3.0.2              
 [55] BiocParallel_1.40.0       viridis_0.6.5            
 [57] DBI_1.2.3                 highr_0.11               
 [59] HDF5Array_1.34.0          alabaster.ranges_1.6.0   
 [61] alabaster.schemas_1.6.0   rappdirs_0.3.3           
 [63] DelayedArray_0.32.0       bluster_1.16.0           
 [65] rjson_0.2.23              tools_4.4.1              
 [67] vipor_0.4.7               beeswarm_0.4.0           
 [69] glue_1.8.0                restfulr_0.0.15          
 [71] rhdf5filters_1.18.0       grid_4.4.1               
 [73] Rtsne_0.17                cluster_2.1.6            
 [75] generics_0.1.3            gtable_0.3.6             
 [77] ensembldb_2.30.0          metapod_1.14.0           
 [79] BiocSingular_1.22.0       ScaledMatrix_1.14.0      
 [81] utf8_1.2.4                XVector_0.46.0           
 [83] ggrepel_0.9.6             BiocVersion_3.20.0       
 [85] pillar_1.9.0              limma_3.62.0             
 [87] dplyr_1.1.4               BiocFileCache_2.14.0     
 [89] lattice_0.22-6            rtracklayer_1.66.0       
 [91] bit_4.5.0                 tidyselect_1.2.1         
 [93] locfit_1.5-9.10           Biostrings_2.74.0        
 [95] knitr_1.48                gridExtra_2.3            
 [97] bookdown_0.41             ProtGenerics_1.38.0      
 [99] edgeR_4.4.0               xfun_0.48                
[101] statmod_1.5.0             UCSC.utils_1.2.0         
[103] lazyeval_0.2.2            yaml_2.3.10              
[105] evaluate_1.0.1            codetools_0.2-20         
[107] tibble_3.2.1              alabaster.matrix_1.6.0   
[109] BiocManager_1.30.25       graph_1.84.0             
[111] cli_3.6.3                 munsell_0.5.1            
[113] jquerylib_0.1.4           Rcpp_1.0.13              
[115] dir.expiry_1.14.0         dbplyr_2.5.0             
[117] png_0.1-8                 XML_3.99-0.17            
[119] parallel_4.4.1            blob_1.2.4               
[121] AnnotationFilter_1.30.0   sparseMatrixStats_1.18.0 
[123] bitops_1.0-9              viridisLite_0.4.2        
[125] alabaster.se_1.6.0        scales_1.3.0             
[127] crayon_1.5.3              rlang_1.1.4              
[129] cowplot_1.1.3             KEGGREST_1.46.0          

References

Grun, D., M. J. Muraro, J. C. Boisset, K. Wiebrands, A. Lyubimova, G. Dharmadhikari, M. van den Born, et al. 2016. β€œDe Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.” Cell Stem Cell 19 (2): 266–77.