# Bach mouse mammary gland (10X Genomics) ## Introduction This performs an analysis of the @bach2017differentiation 10X Genomics dataset, from which we will consider a single sample of epithelial cells from the mouse mammary gland during gestation. ## Data loading ``` r library(scRNAseq) sce.mam <- BachMammaryData(samples="G_1") ``` ``` r library(scater) rownames(sce.mam) <- uniquifyFeatureNames( rowData(sce.mam)$Ensembl, rowData(sce.mam)$Symbol) library(AnnotationHub) ens.mm.v97 <- AnnotationHub()[["AH73905"]] rowData(sce.mam)$SEQNAME <- mapIds(ens.mm.v97, keys=rowData(sce.mam)$Ensembl, keytype="GENEID", column="SEQNAME") ``` ## Quality control ``` r unfiltered <- sce.mam ``` ``` r is.mito <- rowData(sce.mam)$SEQNAME == "MT" stats <- perCellQCMetrics(sce.mam, subsets=list(Mito=which(is.mito))) qc <- quickPerCellQC(stats, percent_subsets="subsets_Mito_percent") sce.mam <- sce.mam[,!qc$discard] ``` ``` r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard gridExtra::grid.arrange( plotColData(unfiltered, y="sum", colour_by="discard") + scale_y_log10() + ggtitle("Total count"), plotColData(unfiltered, y="detected", colour_by="discard") + scale_y_log10() + ggtitle("Detected features"), plotColData(unfiltered, y="subsets_Mito_percent", colour_by="discard") + ggtitle("Mito percent"), ncol=2 ) ```
Distribution of each QC metric across cells in the Bach mammary gland dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-bach-qc-dist)Distribution of each QC metric across cells in the Bach mammary gland dataset. Each point represents a cell and is colored according to whether that cell was discarded.

``` r plotColData(unfiltered, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() ```
Percentage of mitochondrial reads in each cell in the Bach mammary gland dataset compared to its total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-bach-qc-comp)Percentage of mitochondrial reads in each cell in the Bach mammary gland dataset compared to its total count. Each point represents a cell and is colored according to whether that cell was discarded.

``` r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features high_subsets_Mito_percent ## 0 0 143 ## discard ## 143 ``` ## Normalization ``` r library(scran) set.seed(101000110) clusters <- quickCluster(sce.mam) sce.mam <- computeSumFactors(sce.mam, clusters=clusters) sce.mam <- logNormCounts(sce.mam) ``` ``` r summary(sizeFactors(sce.mam)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.264 0.520 0.752 1.000 1.207 10.790 ``` ``` r plot(librarySizeFactors(sce.mam), sizeFactors(sce.mam), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Bach mammary gland dataset.

(\#fig:unref-bach-norm)Relationship between the library size factors and the deconvolution size factors in the Bach mammary gland dataset.

## Variance modelling We use a Poisson-based technical trend to capture more genuine biological variation in the biological component. ``` r set.seed(00010101) dec.mam <- modelGeneVarByPoisson(sce.mam) top.mam <- getTopHVGs(dec.mam, prop=0.1) ``` ``` r plot(dec.mam$mean, dec.mam$total, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(dec.mam) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) ```
Per-gene variance as a function of the mean for the log-expression values in the Bach mammary gland dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to simulated Poisson counts.

(\#fig:unref-bach-var)Per-gene variance as a function of the mean for the log-expression values in the Bach mammary gland dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to simulated Poisson counts.

## Dimensionality reduction ``` r library(BiocSingular) set.seed(101010011) sce.mam <- denoisePCA(sce.mam, technical=dec.mam, subset.row=top.mam) sce.mam <- runTSNE(sce.mam, dimred="PCA") ``` ``` r ncol(reducedDim(sce.mam, "PCA")) ``` ``` ## [1] 15 ``` ## Clustering We use a higher `k` to obtain coarser clusters (for use in `doubletCluster()` later). ``` r snn.gr <- buildSNNGraph(sce.mam, use.dimred="PCA", k=25) colLabels(sce.mam) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ``` r table(colLabels(sce.mam)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 10 ## 550 847 639 477 54 88 39 22 32 24 ``` ``` r plotTSNE(sce.mam, colour_by="label") ```
Obligatory $t$-SNE plot of the Bach mammary gland dataset, where each point represents a cell and is colored according to the assigned cluster.

(\#fig:unref-bach-tsne)Obligatory $t$-SNE plot of the Bach mammary gland dataset, where each point represents a cell and is colored according to the assigned cluster.

## Session Info {-}
``` R version 4.4.1 (2024-06-14) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 24.04.1 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: America/New_York tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] BiocSingular_1.22.0 scran_1.34.0 [3] AnnotationHub_3.14.0 BiocFileCache_2.14.0 [5] dbplyr_2.5.0 scater_1.34.0 [7] ggplot2_3.5.1 scuttle_1.16.0 [9] ensembldb_2.30.0 AnnotationFilter_1.30.0 [11] GenomicFeatures_1.58.0 AnnotationDbi_1.68.0 [13] scRNAseq_2.19.1 SingleCellExperiment_1.28.0 [15] SummarizedExperiment_1.36.0 Biobase_2.66.0 [17] GenomicRanges_1.58.0 GenomeInfoDb_1.42.0 [19] IRanges_2.40.0 S4Vectors_0.44.0 [21] BiocGenerics_0.52.0 MatrixGenerics_1.18.0 [23] matrixStats_1.4.1 BiocStyle_2.34.0 [25] rebook_1.16.0 loaded via a namespace (and not attached): [1] jsonlite_1.8.9 CodeDepends_0.6.6 magrittr_2.0.3 [4] ggbeeswarm_0.7.2 gypsum_1.2.0 farver_2.1.2 [7] rmarkdown_2.28 BiocIO_1.16.0 zlibbioc_1.52.0 [10] vctrs_0.6.5 memoise_2.0.1 Rsamtools_2.22.0 [13] RCurl_1.98-1.16 htmltools_0.5.8.1 S4Arrays_1.6.0 [16] curl_5.2.3 BiocNeighbors_2.0.0 Rhdf5lib_1.28.0 [19] SparseArray_1.6.0 rhdf5_2.50.0 sass_0.4.9 [22] alabaster.base_1.6.0 bslib_0.8.0 alabaster.sce_1.6.0 [25] httr2_1.0.5 cachem_1.1.0 GenomicAlignments_1.42.0 [28] igraph_2.1.1 mime_0.12 lifecycle_1.0.4 [31] pkgconfig_2.0.3 rsvd_1.0.5 Matrix_1.7-1 [34] R6_2.5.1 fastmap_1.2.0 GenomeInfoDbData_1.2.13 [37] digest_0.6.37 colorspace_2.1-1 dqrng_0.4.1 [40] irlba_2.3.5.1 ExperimentHub_2.14.0 RSQLite_2.3.7 [43] beachmat_2.22.0 labeling_0.4.3 filelock_1.0.3 [46] fansi_1.0.6 httr_1.4.7 abind_1.4-8 [49] compiler_4.4.1 bit64_4.5.2 withr_3.0.2 [52] BiocParallel_1.40.0 viridis_0.6.5 DBI_1.2.3 [55] highr_0.11 HDF5Array_1.34.0 alabaster.ranges_1.6.0 [58] alabaster.schemas_1.6.0 rappdirs_0.3.3 DelayedArray_0.32.0 [61] bluster_1.16.0 rjson_0.2.23 tools_4.4.1 [64] vipor_0.4.7 beeswarm_0.4.0 glue_1.8.0 [67] restfulr_0.0.15 rhdf5filters_1.18.0 grid_4.4.1 [70] Rtsne_0.17 cluster_2.1.6 generics_0.1.3 [73] gtable_0.3.6 metapod_1.14.0 ScaledMatrix_1.14.0 [76] utf8_1.2.4 XVector_0.46.0 ggrepel_0.9.6 [79] BiocVersion_3.20.0 pillar_1.9.0 limma_3.62.0 [82] dplyr_1.1.4 lattice_0.22-6 rtracklayer_1.66.0 [85] bit_4.5.0 tidyselect_1.2.1 locfit_1.5-9.10 [88] Biostrings_2.74.0 knitr_1.48 gridExtra_2.3 [91] bookdown_0.41 ProtGenerics_1.38.0 edgeR_4.4.0 [94] xfun_0.48 statmod_1.5.0 UCSC.utils_1.2.0 [97] lazyeval_0.2.2 yaml_2.3.10 evaluate_1.0.1 [100] codetools_0.2-20 tibble_3.2.1 alabaster.matrix_1.6.0 [103] BiocManager_1.30.25 graph_1.84.0 cli_3.6.3 [106] munsell_0.5.1 jquerylib_0.1.4 Rcpp_1.0.13 [109] dir.expiry_1.14.0 png_0.1-8 XML_3.99-0.17 [112] parallel_4.4.1 blob_1.2.4 bitops_1.0-9 [115] viridisLite_0.4.2 alabaster.se_1.6.0 scales_1.3.0 [118] purrr_1.0.2 crayon_1.5.3 rlang_1.1.4 [121] cowplot_1.1.3 KEGGREST_1.46.0 ```